Недопечатали, видимо) "...в которых касательная к графику..." у = х³ + 5х²; у' = 3х² + 10х Пусть касательная проведена в точке х0. Запишем уравнение касательной в этой точке: у = у'(х0) × (х - х0) + у(0). Угловой коэффициент этой касательной равен у'(х0) и, по условию, равен -6 (касательная и прямая у = -6х + 27 параллельны ⇔ равны угловые коэффициенты). Имеем уравнение: у'(х0) = -6; 3(х0)² + 10(х0) = -6; 3(х0)² + 10(х0) + 6 = 0; Нет надобности решать это уравнение, пусть даже и квадратное. По условию, необходимо найти произведение абсцисс. По теореме Виета, произведение корней уравнения равно отношению свободного члена и старшего коэффициента. В данном случае, произведение равно 6/3 = 2. ответ: 2.
Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
у = х³ + 5х²;
у' = 3х² + 10х
Пусть касательная проведена в точке х0. Запишем уравнение касательной в этой точке:
у = у'(х0) × (х - х0) + у(0).
Угловой коэффициент этой касательной равен у'(х0) и, по условию, равен -6 (касательная и прямая у = -6х + 27 параллельны ⇔ равны угловые коэффициенты).
Имеем уравнение:
у'(х0) = -6;
3(х0)² + 10(х0) = -6;
3(х0)² + 10(х0) + 6 = 0;
Нет надобности решать это уравнение, пусть даже и квадратное. По условию, необходимо найти произведение абсцисс. По теореме Виета, произведение корней уравнения равно отношению свободного члена и старшего коэффициента. В данном случае, произведение равно 6/3 = 2.
ответ: 2.