М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sonya76557
sonya76557
03.09.2021 16:00 •  Алгебра

Укажіть кількість коренів рівняння (x^2-25)√x-4=0

👇
Ответ:
Диана149018
Диана149018
03.09.2021

2

Объяснение:

Первое что нужно сделать, узнать ОДЗ(область допустимых значений).

В нашем случае выражение под корнем должно быть неотрицательное. То есть:

x-4≥0

x≥4

Произведение равно нулю, когда хотя бы один из множителей равен нулю.

В нашем случае:

(x²-25)=0 или √(x-4)=0

Решим первое уравнение

(x²-25)=0

Видим разность квадратов ( a²-b²=(a-b)(a+b) ):

x²-5²=0

(x-5)(x+5)=0

Опять же первое свойство которое я написал:

x-5=0 > x=5 (входит в ОДЗ)

или

x+5=0  > x=-5 (он нам не подходит, т.к. не входит в ОДЗ)

Решаем второе уравнение

√(x-4)=0 (возводим в квадрат обе части уравнения)

x-4=0

x=4 (входит в ОДЗ)

4,6(53 оценок)
Открыть все ответы
Ответ:
katuschaglebtsc
katuschaglebtsc
03.09.2021

b)

3

x

+3

x+2

<270

3

x

+3

2

∗3

x

<270

3

x

+9∗3

x

<270

10∗3

x

<270 ∣:10

3

x

<27

3

x

<3

3

x<3.

ответ: x∈(-∞;3).

h)

\4*4^x-2\geq 7*2^x\\4*(2^2)^x-7*2^x-2\geq 0\\4*2^{2x}-7*2^x-2\geq 0\\\

4∗4

x

−2≥7∗2

x

4∗(2

2

)

x

−7∗2

x

−2≥0

4∗2

2x

−7∗2

x

−2≥0

Пусть 2ˣ=t ⇒

\4t^2-7t-2\geq 0\\4t^2-8t+t-2\geq 0\\4t*(t-2)+(t-2)\geq 0\\(t-2)*(4t+1)\geq 0\\(2^x-2)*(4*2^x+1)\geq 0\\4*2^x+1 > 0\ \ \ \ \Rightarrow\\2^x-2\geq 0\\2^x\geq 2\\2^x\geq 2^1\\x\geq 1.\

4t

2

−7t−2≥0

4t

2

−8t+t−2≥0

4t∗(t−2)+(t−2)≥0

(t−2)∗(4t+1)≥0

(2

x

−2)∗(4∗2

x

+1)≥0

4∗2

x

+1>0 ⇒

2

x

−2≥0

2

x

≥2

2

x

≥2

1

x≥1.

ответ: x∈[1;+∞).

4,6(50 оценок)
Ответ:
таня2033
таня2033
03.09.2021

b)

3

x

+3

x+2

<270

3

x

+3

2

∗3

x

<270

3

x

+9∗3

x

<270

10∗3

x

<270 ∣:10

3

x

<27

3

x

<3

3

x<3.

ответ: x∈(-∞;3).

h)

\4*4^x-2\geq 7*2^x\\4*(2^2)^x-7*2^x-2\geq 0\\4*2^{2x}-7*2^x-2\geq 0\\\

4∗4

x

−2≥7∗2

x

4∗(2

2

)

x

−7∗2

x

−2≥0

4∗2

2x

−7∗2

x

−2≥0

Пусть 2ˣ=t ⇒

\4t^2-7t-2\geq 0\\4t^2-8t+t-2\geq 0\\4t*(t-2)+(t-2)\geq 0\\(t-2)*(4t+1)\geq 0\\(2^x-2)*(4*2^x+1)\geq 0\\4*2^x+1 > 0\ \ \ \ \Rightarrow\\2^x-2\geq 0\\2^x\geq 2\\2^x\geq 2^1\\x\geq 1.\

4t

2

−7t−2≥0

4t

2

−8t+t−2≥0

4t∗(t−2)+(t−2)≥0

(t−2)∗(4t+1)≥0

(2

x

−2)∗(4∗2

x

+1)≥0

4∗2

x

+1>0 ⇒

2

x

−2≥0

2

x

≥2

2

x

≥2

1

x≥1.

ответ: x∈[1;+∞).

4,8(4 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ