Решить уравнение: |x+1|-|x-2|+|3x+6|=5.
3|x+2| +|x+1|- |x-2| =5.
- - - + - - + + - + + +
(-2) (-1 ) (2)
a) { x < -2 ; -(3x -6) -(x +1) +(x -2)=5.⇔ { x < -2 ; x = -14/3. ⇒ x = -14/3.
б) { -2 ≤ x< - 1 ; 3x+6 -(x+1) +(x -2)=5.⇔ { -2 ≤ x<- 1 ; x = 2/3.⇒ x ∈∅.
в) { - 1 ≤ x< 2 ; 3x+6 +(x +1) +(x -2)=5.⇔ {-1 ≤ x< 2 ; x = 0. ⇒ x = 0.
д) { x≥ 2 ; 3x+6 +(x +1) - (x -2)=5.⇔ {1 ≤ x< 2 ; x = - 4/3. ⇒ x ∈∅.
ответ: - 14/3 ; 0 .
2t^2+t-1=0
t1=(-1-3)/4=-1
t2=(-1+3)/4=1/2
Вернёмся к замене
sinx=-1
x=-Π/2+2Πn, n€Z
sinx=1/2
x1=Π/6+2Πm, m€Z
x2=5Π/6+2Πm, m€Z
ответ: -Π/2+2Πn, n€Z; Π/6+2Πm, 5Π/6+2Πm, m€Z
2) 6cos^2x+cosx-1=0
Пусть t=cosx, где t€[-1;1], тогда
6t^2+t-1=0
t1=(-1-5)/12=-1/2
t2=(-1+5)/12=1/3
Вернёмся к замене:
cosx=-1/2
x=+-arccos(-1/2)+2Πn, n€Z
cosx=1/3
x=+-arccos(1/3)+2Πm, m€Z
ответ: +-arccos(-1/2)+2Πn, n€Z; +-arccos(1/3)+2Πm, m€Z
3) 2cos^2x+sinx+1=0
2(1-sin^2x)+sinx+1=0
-2sin^2x+sinx+3=0
Пусть t=sinx, где t€[-1;1], тогда
-2t^2+t+3=0
t1=(-1-5)/-4=-1,5 посторонний, т.к. t€[-1;1]
t2=(-1+5)/-4=-1
Вернёмся к замене
sinx=-1
x=Π/2+2Πn, n€Z
ответ: Π/2+2Πn, n€Z