М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alexnn08
alexnn08
12.04.2022 10:17 •  Алгебра

Постройте графики следующих функций ( название графика, название осей, легенда - элементы графика)) 1) y = sinx; y = cosx - на одной графике две функции
2) y = a+bx
3) y = ax²
значения коэффициентов а,b выбираются самостоятельно.
исходные данных предоставить в виде таблицы​

👇
Открыть все ответы
Ответ:
zina0785ozew68
zina0785ozew68
12.04.2022
Решение:
Задание можно решить по теореме Виета:
х1+х2=-р
х1*х2=q
 И кроме того должно соблюдаться условие:
х1=-х2
Зная это равенство можно подставить вместо х1, х2, тогда:
-х2+х2=-р  или: 0=-р
-х2*х2=q    или -х²=q
Подставим значения (р) и (q): 
-(5k²-8k-13)=0
-k^4=-x^2
Решим первое уравнение:
-5k²+8k+13=0  Умножим уравнение на (-1)
5k²-8k-13=0
k1,2=(8+-D)/2*5
D=√(64-4*5*-13)=√(64+260)=√324=18
k1,2=(8+-18)/10
k1=(8+18)/10=26/10=2,6
k2=(8-18)/10=-10/10=-1
Подставим значения (k) в выражение: -k^4=-x^2  , но прежде умножим левую и правую часть этого выражения на (-1):
k^4=x^2
2,6^4=x^2 отсюда:
х1,2=+-2,6²
х1=6,76
х2=-6,76

(-1)^4=x^2
1=x^2
x3,4=+-√1
x3=1
x4=-1
Значения всех корней вычислять, как видно из условия задачи необязательно, необходимо найти сумму всех значений k
Сумма значений k равна:
2,6+(-1)=1,6

ответ: 1,6
4,4(89 оценок)
Ответ:
MostQweek
MostQweek
12.04.2022
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
4,6(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ