пусть первое число равно х, а второе у. Тогда 2х+у=11, а x^2+y^2=25.
Получаем систему уравнений:
2х+у=11;
x^2+y^2=25.
Выразим из первого уравнения у:
у=11-2х
и подставим полученное значение во втрое:
x^2+(11-2x)^2=25
x^2+121-44x+4x^2=25
5x^2-44x+121-25=0
5x^2-44x+96=0
Найдем дискриминант квадратного уравнения
D=b^2-4ac=1936-4*5*96=16
Так как дискриминант больше нуля то, квадратное уравнение имеет два корня:
x1=(-b+√D)/(2a)=(44+√16)/(2*5)=4.8
x2=(-b-√D)/2a=(44-√16)/(2*5)=4
В условии задачи сказано, что взяты натуральные числа, значит, нам подходит только х=4
Найдем у:
у=11-2х
у=11-2*4
у=3
ответ: взяты числа 4 и 3
пусть одно число х,второе у..
тогда среднее арифметическое равно (х+у)/2=7 -умножим обе часть на 2,чтобы избавиться от знаменателя
х (в квадрате) -у (в квадрате)=14
тогда получим, что
х+у=14
х (в квадрате) -у (в квадрате)=14
выразим из первого уравнения,х,и подставим во второе,и получим,
х=14-у
(14-у) в квадрате-у в квадрате=14.
раскроем скобки второго уравнения.
196+у (в квадрате)-28у-у(в квадрате)=14
приведём подобные и получим,
-28у=14-196
-28у=-182
у=6,5.
тогда,х=14-6,5=7,5.
и найдём сумму квадратов этих чисел
7,5 в квадрате+6,5 в квадрате=98,5
все ответ сам напишешь?