∫(х³/(4-х²)dx=?
Подынтегральное выражение можно представить в виде
х³/(4-х²)=(4х/(4-х²))-х,
Действительно, если почленно уголком разделим х³ на (4-х²), в частном будет -х, в остатке 4х, поэтому дробь х³/(4-х²)=(4х/(4-х²))-х, а интеграл тогда разобьется на два таких интеграла ∫((х³/(4-х²))dх= ∫(4х/(4-х²))dх +∫(-х)dх = -2∫(-2х)dх /(4-х²)-∫хdх =-2*∫ d(4-х²)/(4-х²)-∫х dх =-2㏑I(4-х²)I -x²/2+c, где с=const
ответ ∫(х³/(4-х²)dx=-2㏑I(4-х²)I -(x²/2)+c, где с=const
∠В = 110°, ∠ВКА = х, Теперь Δ АКС. ∠КАС = х, ∠АКС = 110°+х, теперь можно найти ∠С = 180° - ( х + 110° +х) = 70° - 2х
ΔАОС . ∠ОАС= х, ∠ОСА = 35° - х
х + 35° - х + ∠АОС = 180°
∠АОС = 180 °- 35° = 145°