М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
АУЕ282
АУЕ282
19.02.2022 00:30 •  Алгебра

Обьсните как решать через дискриминант .

👇
Ответ:
syune333
syune333
19.02.2022

вот)))))))))))))))))))))))


Обьсните как решать через дискриминант .
4,7(29 оценок)
Ответ:
45Эвлария
45Эвлария
19.02.2022

Формула дискриминанта B^2-4AC
A-коэфф. перед x^2
B-коэфф. перед x
С-просто число.
Подставляешь в формулу эти значения,находишь дискриминант.
Дальше,подставляешь в формулу x= -b+√D (все это)/2A
 Также находишь 2ой X. Только формула: x= -b-√D (все это)/2A


Решение написано RossaArts™

4,5(61 оценок)
Открыть все ответы
Ответ:
3937372829
3937372829
19.02.2022
Метод подстановки. если есть система, например, х + y = 10 xy = 1. то можно выразить х или у. из первого уравнения x = 10 - y, выразили х, при этом у перенесли с обратным знаком направо. теперь вместо х во втором уравнении подставляем его выражение: xy = 1 => (10 - y)y = 1, -1 + 10y + y^2 = 0. не удачное, но квадратное уравнение. принцип: выразить одно через другое, и это одно везде заменить его выражением. сложение. например, дана система, ax + by = a cx - dy = b. здесь буквы, кроме х и у, это просто некоторые числа, абстрактно. и если вот таким образом: ax+cx + by - dy = a + b (к первому уравнению прибавили второе) cx - dy = b, (второе остаётся без изменения) из первого уравнения сразу выражается какая-нибудь переменная как число, то потом во второе подставляется вместо этой переменной число. возможно, таких сложений надо будет сделать несколько. возможно, будет лучше ко второму прибавлять первое, тогда без изменений останется первое.
4,8(4 оценок)
Ответ:
qwwwq0
qwwwq0
19.02.2022
Существует много сделать это, распишу самые распространённые, а также порекомендую, какой и когда лучше использовать.
1)Метод тупого перебора, как я называю. Суть в том, что в формуле корней пи/4 + пиn, у нас есть целочисленный параметр n. Если мы последовательно будем придавать ему разные значения, то из этой серии решений будем получать конкретные корни. Далее проверим просто, принадлежит ли полученный корень к заданному отрезку, или нет. Итак,
1)n = 0, тогда x = пи/4 + 0 = пи/4 - ясно, что данный корень не входит в нужный отрезок. Продолжаем перебор.
2)n = 1 x = пи/4 + пи = 5пи/4 - не входит. Продолжаем.
Ну и так далее. Не буду продолжать дальше. Просто придавай n какие-то целые значения, получай корень, проверяй, принадлежит ли он указанному отрезку. На каком-то этапе полученный корень войдёт в отрезок, выписывай их все.
Но этот редко используется, так как промежутки могут дать довольно сложные. Существует ещё довольно хороший отбора корней: метод неравенств.
2)Суть его в том, что учитывая, что искомые корни входят в заданный отрезок, мы можем составить такое неравенство:
            5пи <=  пи/4 + пиn <= 13пи/2
Ну, вполне логично. Далее мы решаем его относительно n. Не забываем, что n у нас - целое число.
                           19пи/4 <= пиn <= 25пи/4
                                       19/4 <= n <= 25/4
Какие же целые n удовлетворяют нашему неравенству? Очевидно, что n = 5; n = 6
Итак, в чём удобство этого метода? Мы сразу нашли те n, при которых получим нужные корни, не перебирая n. Осталось подставить вместо n 5 и 6 в серию решений.
n = 5  x = пи/4 + 5пи = 21пи/4
n = 6 x = пи/4 + 6пи = 25пи/4
Оба корня и пишем в ответ под буковкой б.

3)Метод отбора с единичной окружности. Все иллюстрации я привёл. Рассмотрим первую, которая иллюстрирует первый этап. Мы должны нанести корни всех серий решений на окружность. В данном случае, что мы видим? У нас основная точка пи/4, её мы отмечаем, это серединка первой четверти. Далее по серии решений последовательно прибавляем +пи, +пи, +пи, +пи,то есть пиn, а это полкруга. Итак, каждый последующий корень получается из пи/4 путём передвижения на полокружности против часовой стрелки. Это первый этап задачи.
Вторым этапом будет нанести сам промежуток на окружность и отобрать корни. Здесь поподробнее остановлюсь.
Нанесём левую границу отрезка, то есть 5пи. 5пи - это сколько? Мы идём против часовой стрелки один круг, то есть 2пи, проходим ещё один круг в ту же сторону, то есть ещё 2пи, то есть мы уже 4пи, да ещё пи проходим, это полокружности. Останавливаемся в нужной точке. Это диаметрально противоположная точке 0 точка. Нанесём угол 13пи/2. Как нетрудно увидеть, 13пи/2 = 10пи/2 + 3пи/2 = 5пи + 3пи/2. То есть, мы от точки 5пи должны в ту же сторону пройти ещё 3пи/2, как ты помнишь, это ровно 3 четверти. Останавливаемся там, где останавливаемся.
Дальше мы видим, какой промежуток нужно рассматривать. Его я выделил синей линией. У нас на данном промежутке, и это отлично видно, будет ровно 2 корня.
Я начинаю идти от 5пи до 13пи/2, собирая по дороге всё, что мне попадётся. Первой идёт нижняя красная точка. Суть в том, чтобы правильно написать, какому корню она соответствует. Видно хорошо, что мы можем придти в эту точку, если из 5пи переместимся ещё на полчетвертинки, то есть на пи/4. То есть, наш корень равен 5пи + пи/4 = 21пи/4

Как делается часть б) ? научите меня ! ) в части а) выходит п/4+пn tg=1 а) решите уравнение 15cosx=3
Как делается часть б) ? научите меня ! ) в части а) выходит п/4+пn tg=1 а) решите уравнение 15cosx=3
4,6(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ