б) 64 a ^6 b ^18 c ^12
в) 45x^9
^ - степень
Из левой части получим правую для чего домножим числитель и знаменатель левой части на сумму (sinα+cosα)
((sinα+cosα)²)/((cosα-sinα)(sinα+cosα)) Числитель разложим по формуле
(а+в)²=а²+2ав+в², а знаменатель по формуле (а-в)*(а+в)=а²- в², и почленно разделим числитель на знаменатель, предварительно применив формулу косинуса двойного аргумента cos²α-sin²α=cos2α; синуса двойного аргумента 2sinα*cosα= sin2α и основное тригонометрическое тождество sinα²+cos²α=1.
(sinα²+2sinα*cosα+cos²α)/(cos²α-sin²α)=(1+sin2α)/(cos2α)=
1/cos2α+(sin2α)/(cos2α)=tg2α+(1/cos2α) , что и требовалось доказать.
б) 64 а^6 b^18 c^12
в) 9 x^6 *5 x^3 = 45 x^9
Объяснение:
Возводим в степень каждый множитель.