1. Число делится на 12 без остатка, если оно делится на 3 и на 4. 2. Число делится на 4, если оно четное и если число составленное из последних 2-х цифр данного числа делится на 4. 3. Число делится на 3, если сумма цифр данного числа делится на 3.
Число не может заканчиваться цифрой 5, т.к. оно не будет делиться на 4. Цифру 5 вычеркиваем. Получили число 8453762, осталось вычеркнуть 2 цифры.
Допустим, число заканчивается цифрой 2, число составленное из последних 2-х цифр, должно делиться без остатка на 4. 62 на 4 не делится, а 72 - делится (72:4=18). Вычеркиваем цифру 6, получили число 845372, которое делится на 4.
Проверяем, делится ли оно на 3: 8+4+5+3+7+2=29. 29 на 3 не делится. Цифры 7 или 2 вычеркнуть нельзя, т.к. тогда число снова не будет делиться на 4. Осталось вычеркнуть одну из цифр 8, 4, 5 или 3. 29-8=21 - делится на 3 29-4=25 - не делится 29-5=24 - делится 29-3=26 - не делится. Можем вычеркнуть цифру 8, тогда получим число 45372, которое делится на 12. Или можем вычеркнуть цифру 5, получим число 84372, которое тоже делится на 12.
Такие уравнения решаются по одному приёму: надо снять знак модуля. При этом учитывать, что |x| = x при х ≥ 0 |x| = -x при х <0 Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять. каждое подмодульное выражение = 0 при х = -2, 3, 2 Поставим эти числа на координатной прямой -∞ -2 2 3 +∞ Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид а) (-∞; -2) -(х+2) +(х-3) +(х-2) = 3 -х-2+х-3+х-2 = 3 х = 10 ( в указанный промежуток не входит) б)[-2; 2) х+2 +х -3 +х-2 = 3 3х = 6 х = 2 ( в указанный промежуток не входит) в) [2; 3) х +2 +х -3 -х -2 = 3 х =6 ( в указанный промежуток не входит) г)[3; +∞) х +2 -х+3 -х+2 = 3 -х = -4 х = 4 ( в указанный промежуток входит) ответ: 4
ответ: см фото.
Объяснение: