Начнем с того что, для того чтобы трехзначное число не делилось на одно из чисел 2, 5, 7, достаточно того чтобы это трехзначное число не делилось одновременно и на 2, и на 5, и на 7. То есть можно найти количество любых трехзначных чисел (x) и вычеркнуть из них те что, делятся на 70 (y) (одновременно на 2, 5, 7, 70=НОК(2, 5, 7)).
1) Найти количество трехзначных чисел (x):
Первая цифра не может быть нулем но может быть любой из других цифр (9 вариантов), а вторая и третья цифра может равнятся любому из цифр (по 10 вариантов). По правилу умножения получаем число 9*10*10=900=x.
2) Найти количество трехзначных чисел которые делятся на 70 (y):
Найдем количество чисел меньших 1000 делящихся на 70 (a) и вычеркнем из них чисел меньших 100 делящихся на 70 (b), получая таким образом количество трехзначных чисел делящихся на 70 (y).
Наибольшее число меньшее чем 1000 и делящееся на 70 - 980, т.к. 980+70=1050 уже больше чем 1000. Значит чисел меньших 1000 делящихся на 70 - 980/70=14=a.
Наибольшее число меньшее чем 100 и делящееся на 70 - 70. Получаем b=70/70=1 число меньшее 100 и делящееся на 70.
По итогу y=a-b=14-1=13.
Теперь отнимаем y из x получая как ответ число x-y=900-13=887.
Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
Объяснение:
Начнем с того что, для того чтобы трехзначное число не делилось на одно из чисел 2, 5, 7, достаточно того чтобы это трехзначное число не делилось одновременно и на 2, и на 5, и на 7. То есть можно найти количество любых трехзначных чисел (x) и вычеркнуть из них те что, делятся на 70 (y) (одновременно на 2, 5, 7, 70=НОК(2, 5, 7)).
1) Найти количество трехзначных чисел (x):
Первая цифра не может быть нулем но может быть любой из других цифр (9 вариантов), а вторая и третья цифра может равнятся любому из цифр (по 10 вариантов). По правилу умножения получаем число 9*10*10=900=x.
2) Найти количество трехзначных чисел которые делятся на 70 (y):
Найдем количество чисел меньших 1000 делящихся на 70 (a) и вычеркнем из них чисел меньших 100 делящихся на 70 (b), получая таким образом количество трехзначных чисел делящихся на 70 (y).
Наибольшее число меньшее чем 1000 и делящееся на 70 - 980, т.к. 980+70=1050 уже больше чем 1000. Значит чисел меньших 1000 делящихся на 70 - 980/70=14=a.
Наибольшее число меньшее чем 100 и делящееся на 70 - 70. Получаем b=70/70=1 число меньшее 100 и делящееся на 70.
По итогу y=a-b=14-1=13.
Теперь отнимаем y из x получая как ответ число x-y=900-13=887.