(x²-ax +1)/(x+3)=0 ОДЗ x≠-3 1. D=a²-4=0 a=2 , x²-2x +1=0 x=1 одно решение a=-2, x²+2x +1=0 x=-1 одно решение 2. D=a²-4 >0, и один корень равен -3: a∈(-∞;-2)∪(2;∞) х₀-3=a -3x₀=1 ⇔ при a=-3-1/3 x=-1/3 одно решение
4) При каких a неравенство 2x-a>0 является следствием неравенства x+2a-3>0
2x-a>0 x>a/2 - + (a/2).....---.
x+2a-3>0 x>-2a+3 - + (-2a+3)..---.---.....---
неравенство 2x-a>0 является следствием неравенства x+2a-3>0 другими словами x∈(a/2;∞)⊆x∈(-2a+3;∞)⇔(-2a+3)≤a/2 ⇔2,5a≥3 ⇔2,5a≥3 ⇔ a≥6/6
№1. а) (3-5х)(х+11) - 33 = 3х + 3*11 - 5х * х -5х *11 - 33 = = 3х + 33 - 5х² - 55х - 33 = - 5х² - 52х можно еще вынести общий множитель : = - х (5х +52)
б) 5а×2 + (11+а)(3-5а) = 10а + 33 - 55а +3а - 5а² = = -5а² - 42а +33 или 5а² + (11+а)(3-5а) = 5а² + 33 - 55а +3а -5а²= = -52а + 33 в следующий раз используй знак степени " ^ " , например: а^2 - это a во 2-й степени у^3 - это у в 3 -ей степени и т.д.
в) ab -ac -7b +14c = если условие записано верно , то многочлен в "чистом виде" на множители не раскладывается: = а (b-c) - 7b +7c +7c = = a(b-c) - 7(b-c) + 7c = = (a-7)(b-c) + 7c но! если условие выглядело так : ab -2ac -7b +14c , то получится совсем другой результат: ab - 2ac -7b +14c = a(b -2c) -7(b - 2c) = (a-7)(b-2c)
с²+cd / 8c+8d=c(c+d)/8(c+d)=c/8