А) Каждая из команд сыграет по 15-1 = 14 игр на своём поле. Так как в каждой игре ровно одна команда играет на своём поле, то всего игр 15 * 14 = 210 (пр. умн. тут работает) б) Проще всего понять, что этот случай отличается от предыдущего тем, что вместо двух игр каждая пара играет только одну игру, поэтому всего игр в 2 раза меньше, т.е. 105. В лоб тут правило умножения не применить. Хотя, если постараться, можно: число пар равно 15*14/2 = 105 (тут пр.умн. нет), но каждая пара играет одинаковое число встреч (а именно, одну), поэтому всего матчей 105 * 1 = 105 (пр. умн. работает)
Для применения правила умножения нужно не только, чтобы из каждой "вершины" вело одинаковое число "путей", но и чтобы "пути" не вели в те "вершины", в которых мы считаем число вариантов.
-4<=2+3x<=7 при виде такого вида неравенства обращай внимания на среднюю часть и стремись чтоб по серединке у тебя образовалось "x": первым делом нам нужно избавиться от двойки, единственное как мы можем это сделать, вычесть двойку из всех сторон, давай попробуем: -4-2<=2+3x-2<=7-2 что у нас получилось: -6<=3x<=5 мы избавились от двойки, первая часть задания выполнена, теперь нам мешает только тройка, от неё мы избавимся только при делении на 3: -6÷3<=3x÷3<=5÷3 -2<=x<=5/3 вот и всё, теперь можем смело написать ответ: [-2; 5/3] Удачи
ab^3-9a^3b=ab(b^2-9a^2)=ab(b-3a)(b+3a)