Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с т.Пифагора.
-10 108 10-9,5 97,75 10-9 88 10-8,5 78,75 10-8 70 10-7,5 61,75 10-7 54 10-6,5 46,75 10-6 40 10-5,5 33,75 10-5 28 10-4,5 22,75 10-4 18 10-3,5 13,75 10-3 10 10-2,5 6,75 10-2 4 10-1,5 1,75 10-1 0 10-0,5 -1,25 100 -2 100,5 -2,25 101 -2 101,5 -1,25 102 0 102,5 1,75 103 4 103,5 6,75 104 10 104,5 13,75 105 18 105,5 22,75 106 28 106,5 33,75 107 40 107,5 46,75 108 54 108,5 61,75 109 70 109,5 78,75 1010 88 10