15.
А1. √52=√(4×13)=2√13
ответ: 1
А2. х²-4х=0
Сумма корней равна коэффициенту перед х умноженному на -1.
ответ: 4
А3. х²-9=0
Произведения корней равно свободному члену.
ответ: 4
А4. х²=16
х1=4
х2=-4
4-(-4)=8
ответ: 1
А5. Третье уравнение это сумма двух неотрицательной величины и положительной величины. Она не может равняться нулю.
ответ: 3
В1. √(25х²у^5)=5ху²√у
В2. Выражение имеет смысл, следовательно а≤0
При внесении отрицательного числа под корень, за корнем остаётся минус
а√(-а)=-√(-а³)
С1. (a+b)×2/|(a+b)|=-2
ответ: -2
Если будут вопросы – обращайтесь :)
рассмотрим возможные остатки при делении n на 3 :
A = n(n² + 5)
1) пусть n = 3k , тогда А = 3k(9k² + 5) ; если к кратно 2 , то 3k
кратно 6 и утверждение доказано , а если к нечетно , то
9k² - нечетно , но тогда 9k² + 5 - четно ( как сумма двух
нечетных чисел ) и значит 3k(9k² + 5) кратно 6
2) пусть n = 3k +1 ⇒ A = ( 3k +1)·(9k² + 6k + 6) =
3 ·( 3k +1)·(3k²+2k+2) ; если к четно , то 3k² четно и значит
(3k²+2k+2) четно ⇒ А кратно 6 , если к нечетно , то
( 3k +1 ) - четно ⇒ А кратно 6
3) пусть n = 3k+2 ⇒ A = (3k+2)( 9k² + 6k + 9) = 3·(3k+2)·(3k²+2k+3)
; если k четно , то ( 3к+2) четно ⇒ А кратно 6 ,
если к нечетно , то 3k² нечетно ⇒ 3к² +3 четно ⇒
(3k²+2k+3) четно ⇒ А кратно 6
Итак , во всех возможных вариантах А кратно 6
сли я правильно понял то задача в следующем: lim (4-3x^2)/(x^2-1) при x стремящемся в бесконечность.
Шаг первый: Определяем тип неопределенности предела. Для этого подставляем то значение к которому стремится x (в нашем случае это бесконечность) вместо икса. получаем в числителе бесконечность, в знаменателе бесконечность. Неопределенность бесконечность на бесконечность.
Шаг второй. Если неопределенность бесконечность на бесконечность, то выносим из под скобок икс в наименьшей степени. Степень икса в числителе 2, в знаменателе 2. наименьшая из них тоже 2. Значит выносим икс во второй степени. Получаем:
lim (x^2(4/x^2-3))/(x^2(1-1/x^2)) при x стремящемся в бесконечность. Сокращаем числитель и знаменатель получаем lim (4/x^2-3)/(1-1/x^2) и проверяем ушла ли неопределенность: Да ушла, так как при x -> бесконечность 4/x^2=0 и 1/x^2=0. Ноль не пишем, остается lim 3/1. По свойству предела предел от константы равен этой константе. То есть ответ 3.