Решение y = x³ + 3x² 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² + 6x или f'(x) = 3x*(x + 2) Находим нули функции. Для этого приравниваем производную к нулю 3x*(x + 2) = 0 Откуда: 3x = 0 x₁ = 0 x + 2 = 0 x₂ = - 2 (-∞ ;-2) f'(x) > 0 функция возрастает (-2; 0) f'(x) < 0 функция убывает (0; +∞) f'(x) > 0 функция возрастает В окрестности точки x = - 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 2 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
2sin²(x/2) = 2·2sin(x/2)cos(x/2)·sin(x/2)
2sin²(x/2) = 4sin²(x/2)cos(x/2)
2sin²(x/2) - 4sin²(x/2)cos(x/2) = 0
2sin²(x/2) ·(1 - 2cos(x/2)) = 0
sin²(x/2) = 0 или 1 - 2cos(x/2) = 0
x/2 = πn, n∈Z cos(x/2) = 1/2
x = 2πn, n∈Z x/2 = π/3 + 2πk, k∈Z или x/2 = - π/3 + 2πm, m∈Z
x = 2π/3 + 4πk, k∈Z x = - 2π/3 + 4πm, m∈Z
2sin²(x/2) - 4sin²(x/2)cos(x/2) = 0
2sin²(x/2) - 2·2sin²(x/2)cos(x/2) = 0
это выносим
2sin²(x/2) · ( 1 - 2cos(x/2)) = 0