Для первого стрелка событие А1 - одно попадание в мишень - может быть реализовано двумя событие А11 - попадание при первом выстреле и промах при втором; событие А12 - промах при первом выстреле и попадание при втором. Тогда А1=А11+А12 и Р(А1)+Р(А11)+Р(А12)=0,1*0,8+0,9*0,2=0,26.
Для второго стрелка событие А2 - одно попадание в мишень - может быть также реализовано двумя событие А21 - попадание при первом выстреле и промах при втором; событие А22 - промах при первом выстреле и попадание при втором. Тогда А2=А21+А22 и Р(А2)+Р(А21)+Р(А22)=0,1*0,8+0,9*0,2=0,26. ответ: 0,26.
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
ответ: 15*5*3^(5+2)=75*3^7=75*2187=164025.
Объяснение: