М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MuxaBirko
MuxaBirko
19.04.2022 07:50 •  Алгебра

Преобразуйте выражение

(5−c)2

👇
Ответ:
665609
665609
19.04.2022

Объяснение:

(5−c)^2 = 25-10c+c^2

4,6(81 оценок)
Открыть все ответы
Ответ:
роллы6
роллы6
19.04.2022
Вариант №1
 (14^x)+(14^(x+1))+(14^(2x))=(14^x)*(1+14+14^x)=(14^x)*(15+14^x)
Последняя цифра произведения определяется последними цифрами множителей .Проанализируем чем заканчиваются произведения четверки разных степеней.
4*4            =...6
4*4*4         =...4
4*4*4*4      =...6
4*4*4*4*4   =...4
Значит для четверки главное проанализировать на х-четное/нечетное.
На всякий случай и на 0(нуль)
1) При х=0  14^0(15+14^0)=1*(15+1)=16  Получаем последнее 6
2) При х=1  14(15+14)=406
   и все нечетные 14^x дадут 4 в результате в скобках получим 4+5=9,
   а произведение 9*4=...6
3) При х =2 14^2(15+14^2)=196(15+196)=41356
   и все четные 14^х дадут 6. В скобках получим 6+5=1.
  А 1*6=6.

В результате получаем, что произведение всегда будет оканчивается  цифрой 6 (шесть).

Вариант №2
можно ничего не преобразовывать. Тогда
1) При х=0  1+14+1=16  Получаем последнее 6
2) Если х нечетные
                         14^x дадит 4 
                         14^(x+1) дадит 6
                      а  14^(2х) всегда будет заканчиваться  на 6 
     в результате 4+6+6=...6
3) Если х четные
                         14^x даёт 6 
                         14^(x+1) даётт 4
                         14^(2х) даёт 6 
        6+4+6=6
4,7(67 оценок)
Ответ:
Примем за базу индукции n=5. Проверим истинность выражения при n=5:
2^5\ \textgreater \ 5*5+1 \\ 32\ \textgreater \ 26
Получили верное неравенство => базис доказан. 

Теперь предположим, что неравенство справедливо при некотором n=k>=5, т.е. выполняется: 
2^k\ \textgreater \ 5k+1 .
Доказав истинность выражения при n=k+1, в соответствии с принципом математической индукции, мы докажем и истинность выражения при n>=5.
\\2^{k+1}\ \textgreater \ 5*(k+1)+1\\
Используем наше предположение:
2^k\ \textgreater \ 5k+1 => 2^k*2\ \textgreater \ 2*(5k+1) => 2*(5k+1)\ \textgreater \ 5k+6
10k+2\ \textgreater \ 5k+6

Проверим истинность последнего неравенства:
10k+2\ \textgreater \ 5k+6\\5k\ \textgreater \ 4
k\ \textgreater \ 0.8

Т.е. последнее неравенство верно для всех k>0.8, но, по нашему предположению, k>=5, а значит, выражение истинно при всех n=k+1, что и требовалось доказать.  
4,6(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ