243дм-34дм+250дм=459дм=4м59см
3*60+20+4*60+40=200с+280с=480с/60=8мин
124дм3=123000000см3+1000см3=123001000*7=861007000см3+125дм3=986007дм3
Рассмотрим зависимое событие А (выбор ребенком второй буквы А), которое может произойти лишь в результате осуществления одной из несовместных гипотез В1,В2, В3, В4, В5, В6 (выбор первой буквы А, Е, М, Т, И, К соответственно), которые образуют полную группу событий. Их вероятности определяются классическим отношение числа благоприятных исходов к числу всех возможных исходов):
P(В1) = 3/10 = 0,3; P(В2) = 1/10 = 0,1; P(В3) = 2/10 = 0,2; P(В4) = 2/10 = 0,2; P(В5) = 1/10 = 0,1; P(В6) = 1/10 = 0,1.
Соответствующие условные вероятности события А также находятся по классическому определению:
P(B1-A) = 2/9; P(B2-A) = 3/9 = 1/3; P(B3-A) = 3/9 = 1/3; P(B4-A) = 3/9 = 1/3; P(B5-A) = 3/9 = 1/3; P(B6-A) = 3/9 = 1/3.
Вероятность наступления события по формуле полной вероятности равна:
P(A) = P(В1)*P(B1-A) + P(В2)*P(B2-A) + P(В3)*P(B3-A) + P(B4-A)*P(B4-A) + P(В5)*P(B5-A) + P(В6)*P(B6-A) = 0,3*2/9 + 0,1*1/3 + 0,2*1/3 + 0,2*1/3 + 0,1*1/3 + 0,1*1/3 = 2/30 + 1/30 + 2/30 + 2/30 + 1/30 + 1/30 = 9/30 = 3/10 = 0,3 = 30%
В решении методом полных вероятностей использована теорема сложения вероятностей несовместных событий (В1,В2, В3, В4, В5, В6) – это первый шаг, и теорема умножения вероятностей зависимых событий (событие А зависит от события В) – это второй шаг.
ответ: 30%.
а) 24м3дм-340см+50дм*5
243 дм - 34 дм+ 50дм*5=459 дм
50*5=250
243-34=209
209+250=459
б) 3мин20с+4мин40с
200 с + 280 с= 480 с= 8 мин
в) (124л+1000см в кубе) * 7 + 125дм в кубе
(0,124 куб м+ 0,001 куб м)*7 + 0,125 м куб= 1 м куб
0,124+0,001=0,125
0,125*7=0,875
0,875+0,125=1