Пусть ширина листа (сторона квадрата) равна b=х см. После того, как от прямоугольного листа картона отрезали квадрат, длина оставшегося прямоугольника стала равна a=16-х см. Площадь прямоугольника равна: S=a*b=60 см² Составим и решим уравнение: х(16-х)=60 16х-х²=60 х²-16х+60=0 D=b²-4ac=(-16)²-4*1*60=256-240=16 (√16=4) х₁= = = 10 х₂= = = 6 ОТВЕТ: ширина листа равна 10 см; ширина листа равна 6 см.
По теореме Виета: х²-16х+60=0 х₁+х₂=16 х₁*х₂=60 х₁=10 х₂=6
Проверим: Ширина листа равна 10 см, длина 16 см. Вырезанный квадрат со стороной а=10 см. Ширина оставшегося прямоугольника равна 10 см, длина 16-10=6 см. Площадь равна: S=10*6=60 см².
Ширина листа равна 6 см, длина 16 см. Вырезанный квадрат со стороной а=6 см. Ширина оставшегося прямоугольника равна 6 см, длина 16-6=10 см. Площадь равна: S=6*10=60 см².
1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
8x^3+12x^2y+6xy^2+y^3
Объяснение:
V=(2х+у)^3=8x^3+12x^2y+6xy^2+y^3