Решение 1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2. Найдём r = (√3*√3)/2 = 3/2 = 1,5 По теореме Пифагора находим апофему пирамиды: l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5 ответ: 2,5 2) По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала момента будет (t -5) мин. Решим неравенство: 120 * 2^(-(t - 5)/12) ≤ 7,5 2^(-(t - 5)/12) ≤ 7,5/120 2^(-(t - 5)/12) ≤ 0,0625 2^(-(t - 5)/12) ≤ 2⁻⁴ -(t - 5) / 12 ≤ - 4 t - 5 ≤ 4*12 t ≤ 48 + 5 t ≤ 53 (мин) ответ: t ≤ 53 (мин)
Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77. Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115 115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115 114-2=112 дробей несократимы
1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2.
Найдём r = (√3*√3)/2 = 3/2 = 1,5
По теореме Пифагора находим апофему пирамиды:
l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5
ответ: 2,5
2) По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала
момента будет (t -5) мин.
Решим неравенство:
120 * 2^(-(t - 5)/12) ≤ 7,5
2^(-(t - 5)/12) ≤ 7,5/120
2^(-(t - 5)/12) ≤ 0,0625
2^(-(t - 5)/12) ≤ 2⁻⁴
-(t - 5) / 12 ≤ - 4
t - 5 ≤ 4*12
t ≤ 48 + 5
t ≤ 53 (мин)
ответ: t ≤ 53 (мин)