30% = 30/100 = 3/10
Пусть всего на трёх участках растёт х кустов малины, тогда на первом участке растёт (7/16)х кустов, на втором (3/10)х кустов, а на третьем (3/10)х - 9 кустов
Уравнение: х = (7/16)х + (3/10)х + (3/10)х - 9
х - (35/80)х - (24/80)х - (24/80)х = - 9
х - (83/80)х = - 9
(-3/80)х = - 9
х = - 9 : (-3/80)
х = 9 · 80/3
х = 3 · 80
х = 240
ответ: 240 кустов малины растёт на трёх участках.
Наш многочлен имеет вид
Пусть меньший его корень равен . Так как корни образуют арифметичекую прогрессию, можем записать:
Многочлен раскладывается на линейный множители следующим образом:
Напрашивается замена . Тогда
Нам нужно найти минимумы этой функции, поэтому дифференцируем:
Теперь требуется найти корни этого многочлена. Используя теорему о рациональных корнях многочлена можно найти корень
Согласно теореме Безу, должен делиться на . Разложим на множители, чтобы найти остальные корни:
Решив квадратное уравнение , найдем корни
Расположив корни
на числовой прямой и использовав метод интервалов, узнаем, что производная меняет знак с минуса на плюс в точках , это и есть точки минимума. Переходя обратно к многочлену от x, получаем точки
Квадрат расстояния между ними:
Часовая и минутная стрелки догоняют друг друга раз в 65 минут. Если они догоняют друг друга раз в 66 минут, то часы спешат на 1 минуту. Или же, если очень-очень точно считать, то, когда минутная проходит час от часовой, то проходит 60 минут, но минутная впереди на 5 минут. Когда минутная доходит до того 65-отрезка, то часовая еще 5/12 минут... и так очень долго будет продолжаться, пока геометрическая прогрессия не достигнет некоего предела. У меня получилось, что часы спешат на 6/11 минут, но вряд ли тут про это спрашивают). Хотя задача интересная.