1. рассмотрим производную у'=3x^2+36x. 2. Если в какой-либо точки производная =0, то сама функция в этой точке будет иметь максимум или минимум. Наша производная может быть 0 в двух точках:х=0 и х= - 12. 3.Если построить график производной, то это будет парабола, с нулями в точках -12 и 0, ветви которой будут направленны вверх, т.к. перед х^2 стоит 3- положительное число. => Наша функция будет убывать на промежутке, где производная отрицательна (-12, 0), и возрастать там где она положительна(-беск;-12) и (0;+ беск). Т.е. свой минимум она будет иметь как раз в точке х=0. ( потому что до этого она убывала, а потом стала возрастать). Точка х= -12- нам не нужна, т.к. она не входит в заданный промежуток (-3;3). А вот х=0- нам как раз пригодится. Т.к. она как раз лежит в промежутке от -3 до 3. Следовательно нам нужно найти значение функции у в точке х=0. Подставляем ноль вместо х в выражение у=х^3+18x^2+17 и находим у: у=0^3+18*0^2+17= 0+0+17=17 ответ: 17
1)
x^2 - 13x + 36 < 0
D = 13^2 - 36*4
D = 25
x1 = (13 + 5)/2
x2 = (13 - 5)/2
x1 = 9
x2 = 4
(x - 9)(x - 4) < 0
+ - +
⊕⊕>
4 9 x
Значит 4 < x < 9
Тогда целыми решениями будут x = 5, 6, 7, 8
ответ: 5, 6, 7, 8.
2)
(x - 1)(x + 2)/(x^2 - 10x + 25) ≤ 0
x^2 - 10x + 25 = (x - 5)^2
(x - 1)(x + 2)/(x - 5)^2 ≤ 0
ОДЗ: x ≠ 5
Так как (x - 5)^2 ≥ 0 при любом x, то
(x-1)(x+2) ≤ 0
+ - +
⊕⊕>
-2 1 x
Значит -2 ≤ x ≤ 1
Учитывая ОДЗ получим, что -2 ≤ x ≤ 1
ответ: [-2;1]
3)
4x^2 - 5x - 8 ≥ 0
2x - 6 ≥ 0
D = 25 + 8*4*4
D = 153
x1 = (5 + 3√17)/8
x2 = (5 - 3√17)/8
(x - (5 + 3√17)/8)(x - ((5 - 3√17)/8)) ≥ 0
x - 3 ≥ 0
(x - (5 + 3√17)/8)(x - ((5 - 3√17)/8)) ≥ 0
x ≥ 3
(5 + 3√17)/8 ≈ 2
(5 - 3√17)/8 < 0
x ≥ 3
ответ; [3; +∞)
x^2 + x - 12 > 0
x^2 + x + 12 > 0
D = 1 + 48
D = 49
x1 = (-1 + 7)/2
x2 = (-1 - 7)/2
x1 = 3
x2 = -4
D = 1 - 48
D = -47
D < 0 значит при любом x выражение x^2 + x + 12 будет больше нуля
(x - 3)(x + 4) > 0
x ∈ R
Значит
-4 > x
x > 3
ответ: (-∞; -4) ∪ (3; +∞)