ответ: 2^97
Объяснение:
Найдем наибольшую степень двойки что меньше чем 100.
Очевидно что это 2^6=64 (2^7=128>100)
Понятно ,что число содержащее 6 двоек единственно n1=1 .
Теперь разберемся как посчитать число чисел которые кратны только на 2^5 ( не больше чем на эту степень двоек)
Все числа кратные на 2^5 можно записать так:
2^5 ,2^5*2 ;2^5*3 ;2^5*42^5*n . Соответственно из всех n нас интересуют только нечетные , при этих n число будет кратно ровно на 2^5.
Найдем максимальное n, что 32*n<100
Очевидно что nmax=3 (3*32=96) (число нечетных чисел тут равно n2=2)
Для справки сразу скажем ,что число нечетных чисел на интервале от 1 до k равно k/2- если k-четное и (k+1)/2 ,если k-нечетное.
По аналогии посчитаем число таких чисел для 2^4=16
nmax=6 (6*16=96) (число нечетных чисел n3=6/2=3)
Для 2^3=8 :
nmax=12 (8*12=96) (n4=12/2=6)
Для 2^2=4 :
nmax=25 (4*25=100) ( n5=(25+1)/2=13)
Для 2^1=2
nmax=50 (2*50=100) (n6=50/2=25)
Осталось посчитать общее количество двоек:
N=6n1+5n2+4n3+3n4+2n5+n6=6+10+12+18+26+25=97
Значит 100! делится на 2^97.
сначала применим к правой части формулу приведения:
cos 2x = -cos x
cos 2x + cos x = 0
2cos²x - 1 + cos x = 0
Пусть cos x = t, причём |t| ≤ 1
2t² + t - 1 = 0
D = 1 + 8 = 9
t1 = (-1 - 3) / 4 = -1
t2 = (-1 + 3) / 4 = 1/2
cos x = -1 или cos x = 1/2
x = π + 2πn,n∈Z x = ±arccos 1/2 + 2πk,k∈Z
x = ±π/3 + 2πk,k∈Z
Данные решения могут совпадать, что разумеется нам не надо, поскольку тогда придётся писать что-то одно. В данном случае не совпадают, и это хорошо видно по числовой окружности, нанеся на неё точки π/3 и π видно, что решения никогда не наложатся одно на другое.
Поэтому, произведём отбор корней по обоим формулам.
Отберём корни из первого решения. Для этого впихнём данное решение в указанный промежуток и решим двойное неравенство относительно n:
3π/2 ≤ π + 2πn ≤ 5π/2
π/2 ≤ 2πn ≤ 3π/2
Разделим на 2п:
1/4 ≤n≤ 3/4
Видим, что никаких целых n нет на данном интервале. Значит, данное решение мы отбрасываем.
Осталось второе решение.
Также вобьём его в указанный промежуток и решим полученное двойное неравенство относительно k, но разобъём данное объединённое решение ещё на два и провернём с каждым подобную операцию:
3π/2 ≤ π/3 + 2πk ≤ 5π/2
7π/6 ≤ 2πk ≤ 13π/6
Разделим данное неравенство на 2π:
7/12 ≤ k ≤ 13/12
Замечаем, что на данном промежутке единственное целое значение k - это k = 1. Подставив его в общую формулу вместо k, получим тот самый корень, который нам требуется:
k = 1 x = π/3 + 2π = 7π/3 - это нужный отобранный корень
Теперь проверим. есть ли ещё такие корни.
Для этого впихнём в данный промежуток второй вариант решения ±π/3 + 2πk, это -π/3 + 2πk:
3π/2 ≤ -π/3 + 2πk ≤ 5π/2
11π/6 ≤ 2πk ≤ 17π/6
11/12 ≤ k ≤ 17/12
По неравенству видно, что есть опять же только единственное значение k - это 1. Подставив его в эту формулу получим наш второй корень:
k = 1 x = -π/3 + 2π = 5π/3
Таким образом, ответ пишем таким образом:
а)π + 2πn,n∈Z; ±π/3 + 2πk,k∈Z
б)7π/3; 5π/3
Под буквой б - наши отобранные корни на заданном промежутке. Задача выполнена.