В решении.
Объяснение:
1.
а) 9a² – 12ab + 4b² = квадрат разности =
= (3a - 2b)²;
б) (3a – 2b)² = квадрат разности=
= 9a² - 12ab + 4b²;
в) 9a² – 4b² = разность квадратов=
= (3a - 2b)*(3a + 2b);
г) (3a + 2b)² = квадрат суммы =
= 9a² + 12ab + 4b²;
Разложите на множители:
16k² – 49п² = разность квадратов=
= (4k - 7n)*(4k + 7n);
2.
а) (4k – 7n)² = квадрат разности=
= 16k² - 56kn + 49n²;
б) (16k – 49n)² = квадрат разности=
= 256k² - 1568kn + 2401n²;
в) (4k – 7n)(4k + 7n) = разность квадратов=
=16k² - 49n²;
г) (4k + 7n)² = квадрат суммы=
= 16k² + 56kn + 49n².
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.