Т.к. число N не содержит в своей записи девяток, то число N+1 будет отличаться от него лишь одной последней цифрой, причем эта цифра будет больше соответствующей цифры в исходном числе ровно на 1.
Сумма цифр исходного числа равна 2006(1+2+3+4)=2006*(3+3+3)+2006=3*3*2006+3*668+2. Значит сумма цифр N даёт остаток 2 при делении на 3. Тогда сумма цифр числа N+1 даёт остаток 0 при делении на 3, а значит и само число делится на 3. Тогда, учитывая, что цифр в числе больше одной, это число не простое.
Дана функция y=f(x), где f(x)= -x+3,4, если x<-2 f(x)= -2x+5, если -2≤ x≤ 3.5 f(x)= x²,если x>3.5 вычислите значения функций при заданных значениях аргумента . Расположите полученные числа в порядке убывания f(-3)= 3+3,4=6,4 f(x)= -x+3,4, если x<-2 f(-2) =4+5=9 f(x)= -2x+5, если -2≤ x≤ 3.5 f(3) =-6+5=-1 f(x)= -2x+5, если -2≤ x≤ 3.5 f(4)=16 f(x)= x²,если x>3.5 f(0)= 0+5=5 f(x)= -2x+5, если -2≤ x≤ 3.5 f(3.5)=-7+5=-2 f(x)= -2x+5, если -2≤ x≤ 3.5
Т.к. число N не содержит в своей записи девяток, то число N+1 будет отличаться от него лишь одной последней цифрой, причем эта цифра будет больше соответствующей цифры в исходном числе ровно на 1.
Сумма цифр исходного числа равна 2006(1+2+3+4)=2006*(3+3+3)+2006=3*3*2006+3*668+2. Значит сумма цифр N даёт остаток 2 при делении на 3. Тогда сумма цифр числа N+1 даёт остаток 0 при делении на 3, а значит и само число делится на 3. Тогда, учитывая, что цифр в числе больше одной, это число не простое.
ответ: нет