y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении
В решении.
Объяснение:
И пунктов А и В, расстояние между которыми 225 км, выехали одновременно навстречу друг другу два велосипедиста. Один велосипедист ехал со скоростью 20 км/ч, а другой — со скоростью 25 км/ч. Через t ч расстояние между ними было S км.
1. Задайте формулой зависимость S от t.
Рассмотри два случая:
а) велосипедисты еще не встретились ;
b) встреча произошла, но велосипедисты продолжают движение.
а) S₁ = 20t;
S₂ = 25t.
S = 225 - (20+25)t.
b) S = 45t - 225
2. Через какое время после начала движения расстояние между велосипедистами станет равно 45 км?
а)
S = 225 - (20+25)t.
225 - (20+25)*t = 45
225 - 45t = 45
-45t = 45 - 225
-45t = -180
t = -180/-45
t = 4 (часа).
б)
S = 45t - 225
45 = 45t - 225
-45t = -225 - 45
-45t = -270
t = -270/-45
t = 6 (часов).
а) t₁= 4 часа;
б) t₂= 6 часов.