A) Область определения функции D(х)=R Область значений E(у)=[0; +∞) Нули функции: х=0 Промежутки знакопостоянства: у>0 при х∈(-∞;0)∪(0+∞) Функция убывает при х∈(-∞; 0). Функция возрастает при х∈(0; +∞) Функция ограничена снизу: у≥0 Экстремумы функии: у[min]=0 Функция непрерывна. Функция чётная(график симметричен относительно оси Оу) Функция непериодична. б) Область определения функции D(х)=R Область значений E(у)=(-∞; 0) Нули функции: х=0 Промежутки знакопостоянства: у<0 при х∈(-∞;0)∪(0+∞) Функция убывает при х∈(0; +∞). Функция возрастает при х∈(-∞; 0) Функция ограничена сверху: у≤0 Экстремумы функии: у[max]=0 Функция непрерывна. Функция чётная(график симметричен относительно оси Оу) Функция непериодична.
Исследовать функцию и построить график: Область определения: множество всех действительных чисел D(y)=R
Точки пересечения с осью Ох и Оу:
1.1 Точки пересечения с осью Ох
По формуле Кардано:
- точки пересечения с осью Ох
1.2 Точки пересечения с осью Оу (х=0):
- Точки пересечения с осью Оу.
Возрастания и убывания функции(критические точки): Первая производная: Приравняем производную функцию к нулю, чтобы найти критические точки......................
По т. Виета
___+___(1)_____-_____(3)___+___> возр убыв возр
Итак, функция возрастает на промежутке x ∈ (-∞;1)U(3;+∞), а убывает на промежутке - (1;3). В точке х = 1, функция имеет локальный максимум, а в точке х = 3 - локальный минимум.
Возможные точки перегиба: Вторая производная: Вторую производную приравняем к нулю - Точка перегиба
Вертикальные асимптоты: нет. Горизонтальные асимптоты: нет. Наклонные асимптоты: нет.
Соостветвенно анализу графика построим график.(Смотреть во вложении)
La Banda . Че там брат