1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.
Объяснение:
Вариант 2.
1. Решите уравнение:
a 1) - ; 2) - = 0.
Запишите в стандартном виде число:
275000; 2) 0,0028 .
3. Представьте в виде степени с основанием b выражение:
1) ∙ ; 2) : ; 3) ∙ .
4. Упростите выражение 0,4 ∙ 1,6.
5. Найдите значение выражение:
1) + (; 2) .
6. Преобразуйте выражение ∙
так, чтобы оно не содержало степеней с отрицательными
показателями.
7. Вычислите:
1) ∙ ; 2) .
8. Решите графически уравнение = - x – 6 .
А-8 Контрольная работа №3 по теме
«Рациональные уравнения. Степень с целым отрицательным показателем. Функция y = и
x1 = -1
x2 = 13
Объяснение: