ЖЕДАЛЙАШОВАПРЫГНРМ ВППЦКП
Объяснение:
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Условие
x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.
Решение 1
Докажем неравенство индукцией по n.
База. При n = 1 неравенство превращается в равенство.
Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.
Решение 2
Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.
Замечания
1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.
2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .
3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.