данную задачу решим с арифметической прогрессии:
a₁ = 20 мин - продолжительность в первый день
d = 10 мин - ежедневное увеличение
aₙ = 2 часа = 120 мин - n - день в который продолжительность 2 часа
n - ?
Sₙ - ?, мин общее время на воздухе
Найдем на какой по счёту день длительность прогулки достигнет 2 ч:
aₙ = a₁ + (n - 1)*d
120 = 20 + (n - 1)*10
120 = 20 + 10n - 10
120 = 10 + 10n
10n = 110
n = 110:10
n = 11 - день на который продолжительность прогулки достигнет 2 ч.
Найдем сколько всего времени за эти дни ребёнок проведёт на воздухе S₁₁:
a₁₁ = 120 мин
Sₙ = (a₁ + aₙ)/2*n
S₁₁ = (a₁ + a₁₁)/2*n
S₁₁ = (20 + 120)/2*11
S₁₁ = 140/2*11
S₁₁ = 70*11
S₁₁ = 770 мин проведёт ребёнок на улице;
770 мин = 12 часов 50 мин;
ответ: на 11 день длительность прогулки достигнет 2 ч, 12 часов 50 мин ребёнок проведёт на воздухе.
Чтобы построить прямую надо знать две точки принадлежащие этой прямой. Для этого одну координату задают произвольно, а вторую находят из уравнения данной прямой
Прямая х+5у=7 проходит через точки (7;0) и (-8;3)
пусть у=0 , тогда х=7
пусть х=-8, тогда -8+5у=7 ⇒ 5у=15 ⇒ у=3
Прямая х-4у=2 проходит через точки (2;0) и (-2;-1)
у=0 х=2
х=-2 у=-1
Чтобы найти координаты точки пересечения решаем систему двух уравнений:
х+5у=7
х-4у=2
Вычитаем из первого уравнения второе
9у=5
у=5/9
х=7-5у=7-(25/9)=38/9=4 целых 4/9
Объяснение:
надеюсь