Пусть х - числитель дроби, тогда (х+4) - знаменатель дроби, а х/(х+4) - сама обыкновенная дробь, (х+2) - новый числитель, (х+4+21)=(х+25) - новый знаменатель, тогда (х+2)/(х+25) - новая дробь. Известно, что после преобразования дроби, дробь уменьшилась на 1/4. Составим и решим уравнение. (Получается, исходная дробь больше новой) х/(х+4) - (х+2)/(х+25)=1/4 х/(х+4) - (х+2)/(х+25)-1/4=0 (Приведем к общему знаменателю 4*(х+4)*(х+25)) {4*(х+25)*х - 4*(х+2)*(х+4) - (х+4)*(х+25)}/(4*(х+25)*(х+4))=0 теперь буду писать чисто числитель при условии неравенства 0 знаменателя, чтобы не тянуть дроби (знаменатель равен 0, при х=-4 и х=-25) 4х^2 +100x -(4x+8)*(x+4)-x^2-25x-4x-100=0 4х^2 +100x -4х^2-16x-8x-32-x^2-25x-4x-100=0 -x^2+47x-132=0 x^2-47x+132=0 - получили квадратное уравнение, a=1, b=-47 ,c=132, находим дискриминант D=b^2-4*a*c=(-47)^2-4*1*132=2209-528=1681=41^2 по формулам x=(-b плюс/минус√D)/2a определяем корни х1=(47+41)/2=44 х2=(47-41)/2=3. Определим для обоих случаев значение знаменателя, если х1=44, то 44+4=48 - знаменатель. тогда дробь получится 44/48, но это не подходит по условию задачи, так как указано, что дробь несократимая, а эту можно на 4 сократить. если х2=3, то 3+4=7 - знаменатель, а 3/7 - исходная искомая дробь. ответ 3/7
Пусть х - числитель дроби, тогда (х+4) - знаменатель дроби, а х/(х+4) - сама обыкновенная дробь, (х+2) - новый числитель, (х+4+21)=(х+25) - новый знаменатель, тогда (х+2)/(х+25) - новая дробь. Известно, что после преобразования дроби, дробь уменьшилась на 1/4. Составим и решим уравнение. (Получается, исходная дробь больше новой) х/(х+4) - (х+2)/(х+25)=1/4 х/(х+4) - (х+2)/(х+25)-1/4=0 (Приведем к общему знаменателю 4*(х+4)*(х+25)) {4*(х+25)*х - 4*(х+2)*(х+4) - (х+4)*(х+25)}/(4*(х+25)*(х+4))=0 теперь буду писать чисто числитель при условии неравенства 0 знаменателя, чтобы не тянуть дроби (знаменатель равен 0, при х=-4 и х=-25) 4х^2 +100x -(4x+8)*(x+4)-x^2-25x-4x-100=0 4х^2 +100x -4х^2-16x-8x-32-x^2-25x-4x-100=0 -x^2+47x-132=0 x^2-47x+132=0 - получили квадратное уравнение, a=1, b=-47 ,c=132, находим дискриминант D=b^2-4*a*c=(-47)^2-4*1*132=2209-528=1681=41^2 по формулам x=(-b плюс/минус√D)/2a определяем корни х1=(47+41)/2=44 х2=(47-41)/2=3. Определим для обоих случаев значение знаменателя, если х1=44, то 44+4=48 - знаменатель. тогда дробь получится 44/48, но это не подходит по условию задачи, так как указано, что дробь несократимая, а эту можно на 4 сократить. если х2=3, то 3+4=7 - знаменатель, а 3/7 - исходная искомая дробь. ответ 3/7
ОДЗ x^2 - 5x - 7 > 0
x^2 - 5x - 7 = 0
D = b^2 - 4ac = (-5)^2 - 4*1*(-7) = 25 + 28 = 53 > 0
x_1 = (-b + VD)/2a = (5 + V53)/2
x_2 = (-b - VD)/2a = (5 - V53)/2
ОДЗ (-бесконечности; (5 - V53)/2) объединение ( (5 + V53)/2; +бесконечности)
log_0.3(x^2 - 5x - 7) > log_0.3 1
Так как основание логарифм 0,3 < 1, то большему значению логарифма
соответствует меньшее значение числа.
x^2 - 5x - 7 < 1
x^2 - 5x - 7 - 1 < 0
x^2 - 5x - 8 < 0
x^2 - 5x - 8 = 0
D = b^2 - 4ac = (-5)^2 - 4*1*(-8) = 25 + 32 = 57
x_1 = (-b + VD)/2a = (5 + V57)/2
x_2 = (-b - VD)/2a = (5 - V57)/2
Методом интервалов.
||
+ (5 - V57)/2 - (5 + V57)/2 + x^2 - 5x - 8 < 0
И учитывая ОДЗ
x^2 - 5x - 8 < 0 при (5 - V57)/2 < x < (5 + V57)/2
ответ. ( (5 - V57)/2; (5 + V57)/2 )
Решить уравнение.
log_5(2x + 3) = log_5(2x -1) - 1
log_5 (2x + 3) - log_5(2x 1) = log_5(1/5)
log_5( (2x + 3) / (2x - 1) ) = log_5(1/5)
(2x + 3) / (2x - 1) = 1/5
5(2x -3) = 2x -1
10x -2x = -1 +15
8x = 14
x = 14/8
x = 1.75
ответ. 1,75