пусть одно число х,второе у..
тогда среднее арифметическое равно (х+у)/2=7 -умножим обе часть на 2,чтобы избавиться от знаменателя
х (в квадрате) -у (в квадрате)=14
тогда получим, что
х+у=14
х (в квадрате) -у (в квадрате)=14
выразим из первого уравнения,х,и подставим во второе,и получим,
х=14-у
(14-у) в квадрате-у в квадрате=14.
раскроем скобки второго уравнения.
196+у (в квадрате)-28у-у(в квадрате)=14
приведём подобные и получим,
-28у=14-196
-28у=-182
у=6,5.
тогда,х=14-6,5=7,5.
и найдём сумму квадратов этих чисел
7,5 в квадрате+6,5 в квадрате=98,5
пусть данная дробь a/(a+2), тогда обратная дробь (a+2)/a, и новая дробь
(а+2-3)/а=(а-1)/а
получаем уравнение:
(а-1)/а - а/(а+2) = 1/15
переносим 1/15 влево и приводим к общему знаменателю
Для удобства я знаменатель писать не буду, он будет 15а(а+2). Пишу только числитель:
15(а+2)(а-1)-15а^2-a(a+2)
15a^2-15a+30a-30-15a^2-a^2-2a=0 (потому что дробь равно 0 тогда, когда числитель равен 0, а знаменатель не равен 0, значит имеем ввиду, что а не может быть равно 0,1 и -2) и ищем, когда числитель равен 0:
-a^2+13a-30=0
D=169-120
D=49
а=(-13+-7)/-2
а=10 ; 3
10 нам не подходит, поскольку по условию исходная дробь - несократимая, значит она не может быть 10/12, значит ответ: 3/5