Объяснение:
1)x4 + 13x2 + 36 = 0
Сделаем замену y = x2, тогда биквадратное уравнение примет вид
y2 + 13y + 36 = 0
Для решения этого квадратного уравнения найдем дискриминант:
D = b2 - 4ac = 132 - 4·1·36 = 169 - 144 = 25
y1 = -13 - √25 = -9
2·1
y2 = -13 + √25 = -4
2·1
x2 = -9
x2 = -4
2)25x4 + 16x2 + 9 = 0
Сделаем замену y = x2, тогда биквадратное уравнение примет вид
25y2 + 16y + 9 = 0
Для решения этого квадратного уравнения найдем дискриминант:
D = b2 - 4ac = 162 - 4·25·9 = 256 - 900 = -644
ответ: так как дискриминант меньше нуля то корней нет
Иррациональное
Решение
:
1)x+5=0
x+(5-5)= -5
x= -5
2) x= _ 1
5
15.
А1. √52=√(4×13)=2√13
ответ: 1
А2. х²-4х=0
Сумма корней равна коэффициенту перед х умноженному на -1.
ответ: 4
А3. х²-9=0
Произведения корней равно свободному члену.
ответ: 4
А4. х²=16
х1=4
х2=-4
4-(-4)=8
ответ: 1
А5. Третье уравнение это сумма двух неотрицательной величины и положительной величины. Она не может равняться нулю.
ответ: 3
В1. √(25х²у^5)=5ху²√у
В2. Выражение имеет смысл, следовательно а≤0
При внесении отрицательного числа под корень, за корнем остаётся минус
а√(-а)=-√(-а³)
С1. (a+b)×2/|(a+b)|=-2
ответ: -2
Если будут вопросы – обращайтесь :)