Тема производные .есть ли среди вас те ,кто реально хорошо разбирается в алгебре в теме производные .откликнитесь . вместе сделаем контрольную работу на эту ттему. за деньги конечно.
Линейная функция имеет формулу: y = kx + b прямая пропорциональность имеет формулу: y = kx т.к. по условию их графики параллельны, то их коэффициенты (k) равны.
уравнение прямой, проходящей через две точки, имеет вид: (x - x1) / (x2 - x1) = (y - y1) / (y2 - y1), где x1, x2, y1, y2 - координаты в данном случае x1 = 0, y1 = 2, x2 = 6, y2 = 0 тогда (x - 0) / (6 - 0) = (y - 2) / (0 - 2) x / 6 = (y - 2) / -2 | умножаем на 6 x = -3(y - 2) x = -3y + 6 6 - 3y = x 3y = 6 - x y = (6 - x) / 3 y = 2 - x/3 - линейная функция, её коэффициент k = -1/3
т.к. коэффициенты равны, то прямая пропорциональность имеет формула y = -x/3
x² +px +q =0 .
По условию p, q ∈ Q ( Q -множество рациональных чисел).
По теореме Виета : { x₁ +x₂ = - p ; x₁ *x₂ =q ⇔{ p = -(x₁ +x₂) ; q =x₁ *x₂.
* * * для того, чтобы p, q были рациональными корни должны иметь вид : x₁ =a +√b ; x₂ =a -√b , √b -иррациональное число * * *
---
а)
x₂ = √3 ⇒ x₂ = -√3.
p = -( x₁ +x₂) =0 ;
q =x₁ *x₂ =√3 *(-√3) = -3 .
x² -3 = 0 .
---
б)
x₁ = -1+√3⇒x₂ = -1-√3 . || иначе x₂ = -(√3+1) ||
p = -(x₁+x₂) = - ( ( -1+√3)+( -1-√3) )=2 ;
q =x₁ *x₂ = (√3-1)* (-(√3 +1) ) = -((√3) ² -1)= -(3-1) =-2 .
x² +2x -2 = 0 .
---
в)
x₁ = 2-√5 ⇒x₂ =2+√5
p= -(x₁+x₂) = - ( 2-√5+2+√5 )= -4 ;
q =x₁ *x₂ = ( 2-√5)*(2+√5) =2² -(√5)² =4-5 = -1 .
x² -4x -1 =0 .