1) a) (2a^2-3a+1)-(7a^2-5a)=
2a^2-3a+1-7a^2+5a=
-5a^2+2a+1=
-6a^2+(a+1)^2
b) 3x(4x^2-x)=
12x^3-3x^2=
3x^2(4x-1)
2) a) 2xy-xy^2=xy(2-y)
b) 8b^4+2b^3=2b^3(4b+1)
3) 7-4(3x-1)=5(1-2x)
7-12x+4=5-10x
-12x+10x=5-7-4
-2x=-6
x=3
4) Дано:
6Б=х учеников
6А=х-2 учеников
6В=х+3 ученика
Всего в 3-х классах = 91 ученик
Найти, сколько учеников в каждом классе
х+х-2+х+3=91
3х+1=91
3х=90
х=30 ученика
х-2=28 учеников
х+3=33 ученика
ответ: 6А - 28 учеников: 6Б - 30 уч еников; 6В - 33 ученика
5) (x-1)/5=(5-x)/2+(3x)/4
4(х-1)/20=10(5-х)/20+5(3х)/20
4х-4=50-10х+15х
4х+10х-15х=50+4
-х=54
х=-54
6) 3x(x+y+c)-3y(x-y-c)-3c(x+y-c)=
3x^2+3xy+3xc-3xy+3y^2+3yc-3xc-3yc+3c^2=
3x^2+3y^2+3c^2=
3(x^2+y^2+c^2)
Cгруппируем слагаемые и используя формулу суммы кубов
а³+в³=(а+в)(а²-ав+в²), разложим на множители левую часть уравнения.
(x³+8)-(3x²+6x)=0; (х+2)(х²-2х+4)-3х*(х+2) =0;
(x+2)(x²-2x+4-3x)=0;
(x+2)(x²-5x+4)=0;
x+2=0; х=-2 или х²-5х+4=0 , ДЛЯ последнего УРАВНЕНИЯ
x₁·x₂=4
x₁+x₂=5, теперь просто подберите два числа, чтобы если их сложить, получить второй коэффициент, но с противоположным знаком, т.е. 5, а если перемножить, то получить свободный член с тем же знаком,т.е. 4, ясно, что это 1 и 4, т.к. 1+4=5; 1*4=4
ответ 1; 4; -2.
тогда площадь трапеции = 20-5=15
ответ:15