
Дано:
АВСЕ — параллелограмм,
S АВСЕ = 45 сантиметров квадратных,
Р АВСЕ = 40 сантиметров,
ВН — высота,
АЕ = 5 * ВН .
Найти длины сторон параллелограмма АВСЕ: АВ, СЕ, ВС, АЕ и высоту ВН — ?
1. Рассмотрим параллелограмм АВСЕ.
S АВСЕ = ВН * АЕ;
45 = ВН * 5 * ВН;
45 = 5 * ВН^2;
ВН^2 = 45 : 5;
ВН^2 = 9;
ВН = 3.
2. АЕ = 5 * 3 = 15.
3. Противолежащие стороны равны между собой в параллелограмме, тогда ВС = АЕ = 15 , АВ = СЕ.
Р авсе = АВ + СЕ + ВС + АЕ;
40 = АВ + АВ + 15 + 15;
40 = 2 * АВ + 30;
2 * АВ = 40 - 30;
2 * АВ = 10;
АВ = 10 : 2;
АВ = 5.
ответ: ВН = 3, ВС = АЕ = 15 , АВ = СЕ = 5.
Объяснение:
добавте в лучший ответ
от того, что осталось после первого деня, то после второго дня работы осталась
от того, что осталось после первого дня работы. По условию, после двух дней работы осталось 2 банки, соответственно
=2, из чего следует, что во второй день израсходовали 4 банки с краской (так как 2×2=4). По условию сказано, что в первый день израсходовали половину всех банок +1. Значит, 4 банки - это половина всех банок -1. Соответственно, половина - это 4+1=5. В первый день израсходовали 5+1=6 (банок с краской), во второй день израсходовали 4 (банки с краской), а осталось на третий день еще 2 (банки с краской). Суммируем все количество банок: 6+4+2=12.
1. √72=√36•√2=6√2
2. √80=√4•√20=2√20(кажется так)
3. √300=√100•√3=10√3