М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Анютка0055
Анютка0055
17.04.2020 18:32 •  Алгебра

Вариант 4 А1. Решите уравнение 2х2 - 162 = 0. Если уравнение имеет
более одного корня, найдите разность наибольшего и
наименьшего из них.
1) 162
3) 9
2) 81
4) 18

👇
Ответ:
Макс528103
Макс528103
17.04.2020

Відповідь:

4) 18

Пояснення:

2x^2-162=0\\2x^2=162\\x^2=\frac{162}{2} =81\\x=\sqrt{81}\\\\x=9\\x=-9

разность: 9-(-9)=9+9=18

4,6(82 оценок)
Ответ:
Maks170104
Maks170104
17.04.2020
4.) 18
Пояснение внизу⬇️⬇️⬇️⬇️
Вариант 4 А1. Решите уравнение 2х2 - 162 = 0. Если уравнение имеет более одного корня, найдите разно
4,5(77 оценок)
Открыть все ответы
Ответ:
arturdadayan
arturdadayan
17.04.2020
Решение
1) Lim (x^3-+4x^2+5x+2)/(x^3-3x-2)
x->-1
x³ - 3x - 2 = 0
x = - 1
  x³ - 3x - 2      I x + 1
-(x³ + x²)          x²  - x - 2 = (x + 1)(x -  2)
- x² - 3x
-(-x ² - x)
- 2x - 2
-(-2x - 2)
       0
x³ - 3x - 2 = (x + 1)*(x + 1) (x + 2) = (x + 1)²(x - 2)
x^3+4x^2+5x+2 = 0
x = - 1
  x³ + 4x² + 5x + 2        I x + 1
-(x³ + x²)                       x²  + 3x + 2 = (x + 1)(x + 2)
        3x² + 5x
       -(3x² + 3x)
                 2x + 2
               -(2x + 2)
                        0
x³ + 4x² + 5x + 2   = (x + 1)²(x + 2)
limx-->- 1 [ (x + 1)²(x + 2)] / [(x + 1)²(x - 2)] =
=  limx-->- 1 (x + 2) / (x - 2) =  - (1 /3 )

2)  Lim ln(1-3x)/((sqrt8x+4)-2)
x->0
Используем правило Лопиталя.  Будем брать производные от числителя и знаменателя до тех пор, пока не избавимся от неопределённости.
[ln(1 - 3x)]` = - 3/(1-3x)
[√(8x + 4) - 2]` = 8/2√(8x + 4) = 4/√(8x + 4)
limx-->0 [- 3*√(8x + 4] / [4*(1 - 3x) = - 6/4 = - 3/2

3)   lim (4^x-2^7x)/(tg3x-x)
x->0
(4^x-2^7)` = 4^x*ln4 - 2^7x*ln2 
limx-->0 (4^x*ln4 - 2^7x*ln2 ) = 4ln4 - 2ln2
(tg3x - x)` = 3/cos3x - 1
limx--> 0 (3/cos3x - 1) = 3 - 1 = 2
lim x-->0 (4^x-2^7x)/(tg3x-x) = (4ln4 - 2ln2)/2 = 2ln4 - ln2

4) lim x--> 0 (sin2x/sin3x)^x2
применим первый замечательный предел:  [ limx--> 0 sinx/x = 1 ]
 lim x--> 0 [2*(sin2x/2x)] * limx--> 0 [(1/3)*(sin3x)/3x] = 2/3


       
4,8(19 оценок)
Ответ:
SilverSalt
SilverSalt
17.04.2020
В подобных задачах обычно используется теорема Пифагора и синусы, косинусы, тангенсы острых углов.

Теорема Пифагора может пригодится, если известно две стороны из трёх.
a² = b² + c²
a - гипотенуза; b, c - катеты.

Теперь остановимся на острых углах.

1) Один острый угол равен 45°. В таких задачах прямоугольный треугольник ещё и равнобедренный ⇒ равны катеты.

2) Один из острых углов равен 30° (60°). Есть одна теорема: напротив угла в 30° лежит катет в два раза меньше гипотенузы. Для большей наглядности возьмём треугольник ABC (∠C - прямой). Пусть ∠А = 30°, тогда AB (гипотенуза) = 2*BC (катет, напротив 30°)

3) Обычно острые углы в прямоугольном треугольнике либо равны 30°, 45°, 60°, либо даны синусы, косинусы, тангенсы этих углов ( например, tgA = 2)
В таких случаях надо выражать тангенс, синус или косинус через стороны.

Например в треугольнике ABC (∠C - прямой) BC = 14, а tgA = 2. Нужно найти AC.
Тангенс - отношение противолежащего катета к прилежащему, то есть tgA = BC : AC, подставив значения, находим AC = 7.

Приведу второй пример. Треугольник ABC (∠C - прямой), ∠A = 30°, AB = 8. Найти BC. Такую задачу можно решить по теореме, указанной выше под цифрой 2, или выразив сторону BC через синус.
Синус - отношение противолежащего катета к гипотенузе, то есть sinA = BC : AB. sinA = sin30° = 1/2. Подставив значения, находим BC = 4.
4,5(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ