2 см и 2 см
Объяснение:
Дан прямоугольник, периметр которого равен 8 см. Тогда сумма двух сторон равна 8:2 = 4 см. Обозначим через x одну сторону прямоугольника. Тогда вторая сторона равна: 4–x. Теперь составим функцию площади прямоугольника: y=x·(4–x)=4·x-x². Дифференцируем функцию
y'=(4·x–x²)'=4–2·x.
Находим критические точки функции:
y'=0 ⇔ 4–2·x=0 ⇔ x=2 – критическая точка.
Проверим знаки производной:
при x<2: y'=4–2·x>0 и при x>2: y'=4–2·x<0.
Значит, x=2 точка максимума. Тогда
yмакс=y(2)=4·2–2²=8–4=4 см²,
а стороны x=2 см и 4–2=2 см.
ответ:5
Объяснение:
Покажем, что Петино множество не может содержать больше, чем 5 элементов. От противного: пусть множество содержит не менее 6 элементов. Упорядочим эти элементы по неубыванию модулей:
|a1|≤|a2|≤...≤|a6|.
Отметим, что среди элементов a2, a3… a6 не может встретиться 0.
Для любой четвёрки a, b, c, d,, являющейся выборкой из элементов a2, a3… a6, справедливо неравенство
abcd≤a41.
При этом, так как среди элементов a2, a3… a6 существует не более одного, совпадающего с a1 по модулю, мы получаем
a41<|abcd|.
Выберем четвёрку a, b, c, d, так, чтобы abcd=|abcd|.
Если среди элементов a2, a3… a6 нет отрицательных, то в качестве a, b, c, d, подойдут любые из этих элементов. Если среди элементов a2, a3… a6 есть ровно 1 отрицательный, то в качестве a, b, c, d, подойдут оставшиеся положительные элементы. Если среди элементов a2, a3… a6 есть ровно 2 или 3 отрицательных, то в качестве a, b, c, d, подойдут 2 отрицательных и 2 положительных элемента. Если же среди элементов a2, a3… a6 существует не менее 4 отрицательных, то в качестве a, b, c, d, подойдут любые 4 отрицательных элемента из a2, a3… a6.
Таким образом, мы нашли такие a, b, c, d,, для которых выполняется равенство abcd=|abcd|.
Но тогда abcd<a41<|abcd|=abcd.
Тем самым мы получили противоречие. Значит, Петино множество состоит не более, чем из 5 целых чисел.
Указанный пример показывает, что Петино множество с 5 элементами существует:
1, 2, 3, 4, −5.
Объяснение:
Везде раскрываем скобки получается:
9а³-9а³-12а²-4а+12а²+28(я сразу все раскрыл)=сокращаем подобные члены:
24а, при а=1,6
24×1,6=38,4