1) y = -x^2+2*x-3 Решение Находим первую производную функции: y' = -2x+2 Приравниваем ее к нулю: -2x+2 = 0 x1 = 1 Вычисляем значения функции f(1) = -2 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = -2 Вычисляем: y''(1) = -2<0 - значит точка x = 1 точка максимума функции.
2) y = x^3-x^2-5*x-3 Решение Находим первую производную функции: y' = 3x2-2x-5 Приравниваем ее к нулю: 3x2-2x-5 = 0 x1 = -1 x2 = 5/3 Вычисляем значения функции f(-1) = 0 f(5/3) = -256/27 ответ: fmin = -256/27, fmax = 0 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 6x-2 Вычисляем: y''(-1) = -8<0 - значит точка x = -1 точка максимума функции. y''(5/3) = 8>0 - значит точка x = 5/3 точка минимума функции.
Рисунок к заданию - во вложении 1. Проведем прямую через точки В и С. 2. Точку А соединим с точкой С.. 3.Вокруг отрезка [AC] нарисуем прямоугольник 1 × 2, в котором [AC] является диагональю и делит данный прямоугольник на 2 равных прямоугольныз треугольника. 4. Имеем прямоугольный треугольник с катетами длины 1 и 2 и гипотенузой [AC]. 5. По формуле Пифагора вычисляем длину гипотенузы: 1²+2²=[AC]² => [AC]²=5 => [AC]=√5 ответ:Расстояние от точки А до прямой ВС равно √5≈2.2 клетки
ответ: 28
Объяснение:
На світлині