Точки А, В и C лежат на одной прямой Уравнение этой прямой имеет вид у=kx+m Для нахождения k и m подставим координаты точек 2=ka+m b=4k+m -2=-k+m и АС=BC (AC)²=(-1-a)²+(-2-2)² BC²=(-1-4)²+(-2-b)²
(-1-a)²+(-2-2)²=(-1-4)²+(-2-b)²
1+2a+a²+16=25+4+4b+b²
Получили систему 4-х уравнений {2=ka+m {b=4k+m {-2=-k+m {a²+2a=b²+4b+12
Нарисуйте прямоугольник и квадрат. Тогда по условию можно сказать: возьмем за Х сторону квадрата. Тогда одна из сторон прямоугольника будет равна на 3 меньше, то есть Х-3, а другая сторона на 1 больше этой стороны, тогда Х-3+1, в итоге она равна Х-2. Стороны нашли. Теперь нам известно, что площадь квадрата больше площади прямоугольника на 15 (S1-площадь прямокгольника; S2площадь квадрата) S2>S1 S2+15=S1 (так как на 15 больше) У вадимка все стороны равны следовательно S2=x^2 (площадь равна икс в квадрате) Найдем площадь прямокгольника. В начале мы нашли его стороны...следовательно S1=(X-3)(X-2)
Теперь вернемся к нашему следствию S2+15=S1 (так как на 15 больше) И подставим площади. Получаем:
Решение задания прилагаю