М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Дарька2000
Дарька2000
27.01.2023 23:05 •  Алгебра

ВСЯ НАДЕЖДА НА ВАС
ЛЮДИ ДОБРЫЕ РЕШИТЕ ЕСЛИ ВАМ НЕ ТРУДНО БУДЕТ


ВСЯ НАДЕЖДА НА ВАС ЛЮДИ ДОБРЫЕ РЕШИТЕ ЕСЛИ ВАМ НЕ ТРУДНО БУДЕТ

👇
Открыть все ответы
Ответ:
DarkBlood210
DarkBlood210
27.01.2023
Решение если условие такое, то 1)   [-  12\ (х  -  1)²]    -  2  ≥ 0 - 12 - 2 * (x - 1)²  ≥ 0, x - 1  ≠ 0, x  ≠ 1 - 12 - 2 * (x² - 2x + 1)  ≥ 0 - 12 - 2x² + 4x - 2  ≥ 0 2x² - 4x + 14  ≤ 0 x² - 2x + 7  ≤ 0d = 4 - 4*1*7 = - 24 < 0решений нет 2)   если условие такое, то -  12\ [(х  -  1)²    -  2]  ≥ 0 - 12 < 0, значит (x - 1)²  - 2 > 0 x² - 2x + 1 - 1 > 0 x² - 2x > 0 x(x - 2) > 0 x = 0 x = 2 x∈(-∞; 0)∪(2; +∞)
4,4(91 оценок)
Ответ:
мик104
мик104
27.01.2023
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\&#10;d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\&#10;0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\&#10;0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\&#10;0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\&#10;0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк
4,7(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ