Объяснение:
5/4 и 3/2 = (3 * 2) /(2 * 2) = 6/4; б) 2/3 = (2 * 5)/(3 * 5) = 10/15 и 2/15 в) 7/15 = (7 * 3)/(15 * 3) = 21/45 и 5/9 = (5 * 5)/(9 * 5) = 25/45; г) 1/6 = (1 * 5)/(6 * 5) = 6/30 и 3/10 = (3 * 3)/(10 * 3) = 9/30; д) 1/3 = (1 * 6)/(3 * 6) = 6/18 и 5/18 е) 5/8 = (5 * 3)/(8 * 3) = 15/24 и 2/3 = (2 * 8)/(3 * 8) = 16/24; ж) 1/2 = (1 * 15)/(2 * 15) = 15/30 и 2/15 = (2 * 2)/(15 * 2) = 4/30; з) 5/12 = (5 * 5)/(12 * 5) = 25/60 и 7/15 = (7 * 2)/(15 * 2) = 14/30; и) 3/10 = (3 * 10)/(10 * 10) = 30/100 и 33/100.
Число размещений из n элементов по 4 равно: A⁴n = n!/(n-4)!
Число размещений из n-2 элементов по 3 равно: A³n-2 = (n-2)!/(n-2 -3)! = (n-2)!/(n-5)!
A⁴n в 14 раз больше A ³n-2 => A⁴n : A³n-2 = 14
n!/(n-4)! : (n-2)!/(n-5)! = 14
n! * (n-5)! /(n-2)! *(n-4)! = 14
n! * 1*2*3*...*(n-5) / (n-2)! *1*2*3*...*(n-5)*(n-4) = 14 (сокращаем дробь на 1*2*3*...*(n-5) )
n! / (n-2)! *(n-4) = 14
1*2*3*..*(n-2)*(n-1)*n / 1*2*3*..*(n-2) *(n-4) = 14 (сокращаем дробь на 1*2*3*...*(n-2) )
(n-1)*n / (n-4) = 14 | *(n-4)
(n-1)*n = 14(n-4)
n² - n = 14 n - 56
n² - n - 14 n + 56 = 0
n² - 15 n + 56 = 0
D = 225 - 4*56 = 225 - 224 = 1
n₁= (15 + 1)/2 или n₂= (15 - 1)/2
n₁= 8 или n₂= 7
ответ: 7 ; 8.
Объяснение:
то что получилось то и сделал