75°
Объяснение:
По условию считаем, что каждый друзей видит свой участок стены и друзья вместе контролируют только четвертую часть стены комнаты, что означает 90° (рисунок приложен). По обозначению эта стена дуга BE= дуга EC + дуга СВ = 90°.
Угол обзора одного из друзей ∠CDE=10°, а у другого ∠ВАС=20°, а их сумма ∠ВАС+∠CDE=10°+20°=30°.
Нужно определить градусную меру щели КМ, т.е. дуги КМ.
Применим следующую теорему о секущих:
Угол между двумя секущими, проведенными из одной точки, равен полу разности большей и меньшей высекаемых ими дуг.
Тогда ∠ВАС=(дуга СВ - дуга КМ)/2 и ∠CDE=(дуга EC - дуга КМ)/2.
Поэтому
∠ВАС+∠CDE=(дуга СВ - дуга КМ)/2+(дуга EC - дуга КМ)/2=
=(дуга EC + дуга СВ - 2•дуга КМ)/2=(90°-2•дуга КМ)/2
или же
(90°-2•дуга КМ)/2=30°
90°-2•дуга КМ = 60°
2•дуга КМ = 150°
дуга КМ = 150° : 2 = 75°.
а) х2-12Х+36 = (x - 6)^2
Б)16а2+8аб+б2 = (4a + b)^2
в)0,81p2+0.72pg+0.16g2 = (0,9p + 0,4g)^2
г)1\25m2-4mn+100n2 = (0,2m - 10n)^2
Объяснение:
^2 - это квадрат, если что