Далее: Таким образом, получаем уравнение: Теперь понятно, что можно ввести замену и продолжать решение уже дробно-рационального уравнения.
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём. Мы помним формулу сокращённого умножения: Отсюда я могу легко выразить сумму квадратов: Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y. Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его. Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену: После замены получаем: Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это): Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой) - этот корень не удовлетворяет нашему уравнению. Следовательно, возвращаясь к переменной x, получаем простейшее уравнение: Отсюда Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
4/x+3-5/-(x-3)-1/x-3+1=0
4/x+3+5/x-3-1/x-3+1=0
4(x-3)+5(x+3)-(x+3)+(x+3)×(x-3)/(x+3)×(x-3)=0
8x+x²-9/(x+3)×(x-3)=0
8x+x²-9=0
x²-9+9x-x=0
(x+9)×(x+1)=0
x+9=0
x+1=0
x1=-9, x2=1