1. Обозначим события:
A1 - попадание в первую область мишени;
A2 - попадание во вторую область мишени;
A3 - попадание в третью область мишени.
P(A1) = 0,45;
P(A2) = 0,35;
P(A3) = 0,2.
2. Вероятность событий B и С, что при двух выстрелах стрелок попадет в первую или во вторую область мишени, соответственно, равна:
P(B) = P(A1)^2 = 0,45^2 = 0,2025;
P(С) = P(A2)^2 = 0,35^2 = 0,1225.
3. События B и C несовместимы, поэтому вероятность события D, что при двух выстрелах стрелок попадет либо в первую, либо во вторую область:
P(D) = P(B) + P(C);
P(D) = 0,2025 + 0,1225 = 0,3250.
ответ: 0,3250.
Объяснение:
Постройте график функции y=3x+2
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно: 0; 1; -1.
2) значение аргумента, при котором значение функции равно 0.
3) несколько значений аргумента, при которых функция принимает положительные значения.
4)несколько значений аргумента, при которых функция принимает отрицательные значения.
y=3x+2
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -1 2 5
1)Согласно графика при х=0 у=2
при х= 1 у= 5
при х= -1 у= -1
2)Согласно графика у=0 при х= -2/3 (≈ -0,67)
3)Согласно графика у>0 при х∈( - 2/3; ∞), положительные значения у принимает от -2/3 до + бесконечности, например, 1, 5,10.
4)Согласно графика у<0 при х∈(- ∞; -2/3), отрицательные значения у принимает от -2/3 до - бесконечности, например, -2, -7, -25.
Отметьте лучшим решением и поставьте сердечко