М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SuperMan87
SuperMan87
04.10.2021 20:52 •  Алгебра

1.из карточной колоды в 36 карт наугад вынимают две карты. какова вероятность, что обе карты окажутся тузами? 2.бросаются одновременно две игральные кости. какова вероятность, что сумма выпавших очков будет равна 10?
3.из карточной колоды в 36 карт наугад вынимают две катры. какова вероятность, что обе карты окажутся одной масти? 4.бросаются одновременно две игральные кости. какова вероятность, что сумма очков, выброшенных на
двух кубиках, будет равна 6? 5.сколько можно составить флагов с тремя горизонтальными полосами, если для окраски полос можно использовать пять разных цветов, а все полосы на флаге различны по цвету? 6.сколькими можно выбрать четыре краски из 10 различных красок? 7.запишите формулу числа перестановок из k элементов. 8.запишите формулу вероятности события с равновероятными .

👇
Ответ:
taniaselikova
taniaselikova
04.10.2021

1.  Общее число исходов равно числу сочетаний из 36 по 2:

      n = С(36,2) = 36!/(33!*2!) = 34*35*36/2  = 21420

      Благоприятные исходы  - это  когда  обе карты -   тузы,  т.е. выбираются из 4   

      тузов:      m = C(4,2) = 4!/(2!*2!) = 3*4/2 = 6

      Р = m/n = 6/21420  = 1/3570

 

2. Элементарный исход в этом опыте - упорядоченная пара чисел. Первое число

    выпадает на первом кубике, второе  -  на втором. Множество элементарных        исходов удобно представить таблицей:                  11    21    31    41    51    61
                 12    22    32    42    52    62
                 13    23    33    43    53    63
                 14    24    34    44    54    64
                 15    25    35    45    55    65
                 16    26    36    46    56    66      Получено 36 исходов,  т.е.  n = 36.    Из них нас интересуют только те, в которых сумма цифр равна 10. Из таблицы видно, что таких вариантов всего 3:    46,   55,  64.   m = 3    Значит искомая вероятность равна:  Р = m/n =  3/36 = 1/12.  

 

3.  Сначала подсчитаем вероятность того, что две карты окажутся одной масти. Пусть А - появление первой карты определенной масти, В - появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому:     Р(АВ) = Р(А)*Р(В\А) =  9/36  *  8/35  = 1/4 * 8/35  =  2/35 Т.к.  в колоде 4 различные масти,  то  вероятность, что обе карты окажутся одной масти равна:  Р =  2/35  +   2/35  +   2/35  +   2/35  =  8/35  

 

4. Аналогично  задаче № 2.   Множество элементарных  исходов  n = 36.    Из них нас интересуют только те, в которых сумма цифр равна 6. Из таблицы       видно, что таких вариантов всего 5:   15, 24, 33, 42, 51.   m = 5    Значит искомая вероятность равна:  Р = m/n =  5/36.

4,4(53 оценок)
Открыть все ответы
Ответ:
Vlad8081
Vlad8081
04.10.2021

ответ:Пусть х-скорость катера в стоячей воде,

тогда скорость катера по течению равна х+2 км/ч,

а скорость катера против течения равна х-2 км/ч.

На путь по течению катер затратил 40/(х+2) часа,

а на путь против течения 6/(х-2) часа.

По условию на весь путь затрачено 3 часа.

Составим уравнение:

40/(х+2) + 6/(х-2) =3|*(x+2)(x-2)

40(x-2)+6(x+2)=3(x^2-4)

40x-80+6x+12=3x^2-12

46x-68-3x^2+12=0|*(-1)

3x^2-46x+56=0

D=2116-672=1444

x1=(46+38):6=14 (км/ч)

х2=(46-38):6=1 1/3 (км/ч) - проверкой устанавливаем, что этот корень не подходит  1 1/3-2<0

ответ: скорость катера в стоячей воде равна 14 км/ч

4,6(35 оценок)
Ответ:
тут8
тут8
04.10.2021

1.

a)

x² + 4x + 10 ≥ 0

Рассмотрим функцию у = x² + 4x + 10.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² + 4x + 10 = 0

D = 16 - 40 = - 24 < 0

нулей нет, значит график не пересекает ось Ох.

Схематически график изображен на рис. 1.

у > 0  при x ∈ (- ∞; + ∞)

ответ: 2) Решением неравенства является вся числовая прямая.

b)

- x² + 10x - 25 > 0       | · (- 1)

x² - 10x + 25 < 0

Рассмотрим функцию у = x² - 10x + 25.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² - 10x + 25 = 0

(x - 5)² = 0

x = 5

Схематически график изображен на рис. 2.

у < 0  при x ∈ {∅}

ответ: 1) Неравенство не имеет решений.

c)

x² + 3x + 2 ≤ 0

Рассмотрим функцию у = x² + 3x + 2.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² + 3x + 2 = 0

D = 9 - 8 = 1

Схематически график изображен на рис. 3.

у ≤ 0  при x ∈ [- 2; - 1]

ответ: 4) Решением неравенства является закрытый промежуток.

d)

- x² + 4 < 0         |  · (- 1)

x² - 4 > 0

Рассмотрим функцию у = x² - 4.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² - 4 = 0

x² = 4

x = ± 2

Схематически график изображен на рис. 4.

у > 0  при x ∈ (- ∞; - 2) ∪ (2; + ∞)

ответ: 6) Решением неравенства является объединение двух промежутков.

2.

(x - a)(2x - 1)(x + b) > 0

x ∈(- 4; 1/2) ∪ (5; + ∞)

Решение неравенства показано на рис. 5.

Найдем нули функции у = (x - a)(2x - 1)(x + b).

(x - a)(2x - 1)(x + b) = 0

(x - a) = 0   или   (2x - 1) = 0    или   (x + b) = 0

x = a                      x = 1/2                  x = - b

Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит

 или  

 или  

ответ: a = - 4, b = - 5  или  a = 5, b = 4.

Подробнее - на -

Объяснение:

4,6(86 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ