М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gussamovadel
gussamovadel
05.04.2021 16:32 •  Алгебра

X(x+2)(x-2)-(x-3)(x²+3x+9)=?

👇
Ответ:
eminsultanov7
eminsultanov7
05.04.2021

Объяснение:

x(x²-4)-(x³-3x²+3x²-9x+9x-27)=x³-4x-x³+27=-4x+27

4,6(13 оценок)
Ответ:
Ліка2006
Ліка2006
05.04.2021

Объяснение:

Х(х+2)(х-2)-(х-3)(х^2+3х+9)=

=х(х^2-4)-(х^3-27)=х^3-4х-х^3+27=

= - 4х+27

4,8(36 оценок)
Открыть все ответы
Ответ:
katenok1706
katenok1706
05.04.2021

1.) Корнями уравнения (x+2)(x-6) =0

являются X1 = -2 и X2 = 6

2.) Рисуем числовую прямую:

(-2) 0 6

3.) Определяем знак на каждом из 3х промежудков (от минус бесконечности до -2, от -2 до 6 и от 6 до плюс бесконечности)

Для этого подставим например -4 в неравенство: (-4 +2)(-4 -6) = -2*(-10) - результат - положительный следовательно на промежудке (- бесконечность; -2) стоит "+".

Аналогично с 2мя другими промежудками:

(-2) 0 6

 +-+__ 

4.) По условию уравнения "<", нам подходит только второй промежуток.

5.) ответ: X (принадлежит) (-2; -6) 

 

4,5(70 оценок)
Ответ:
lidiyaerox28
lidiyaerox28
05.04.2021

ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .

Для вычисления подобных пределов удобно использовать правило Лопиталя.

4,4(37 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ