ответ: а) 0,2; -2; б) 0,25; в) нет корней, т.к. дискриминант отрицательный; г) 4,5; 0; д) 0,4; -0,4
Объяснение: а) Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = 9^2 - 4•5•(-2) = 81 + 40 = 121
Т.к. D>0 то, квадратное уравнение имеет два действительных корня:
x1 = -b+ √D / 2a = -9+ √121 /2•5= -9+11/10=2/10=0,2
х2 = -b-√D /2a = -9-√121 /2•5= -9-11/10=-20/10=-2
б) Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = (-8)^2 - 4·16·1 = 64 - 64 = 0
Т.к. D=0 то, квадратное уравнение имеет один действительный корень:
x = -b/2a= -(-8)/2•16= 8/32=0,25
в) Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-3)2 - 4· 8·1 = 9 - 32 = -23
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
г) Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = (-9)^2 - 4· 2·0 = 81 - 0 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х1= -b+ √D / 2a = 9+ √81/2•2= 9+9/4=18/4=4,5
х2 = -b-√D /2a = 9-√81/2•2=9-9/4=0/4=0
д) Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = 0^2 - 4·25·(-4) = 0 + 400 = 400
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x2 = 0 - √400 / 2·25 = 0 - 20 / 50 = -20 / 50 = -0.4
x1 = 0 + √400 / 2·25 = 0 + 20 / 50 = 20 / 50 = 0.4
Объяснение:
1. Функция задана формулой y = -2x + 7.
Определите:
1) значение функции, если значение аргумента равно 6;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=6
у= -2*6+7= -5 при х=6 у= -5
2) значение аргумента, при котором значение функции равно -9;
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
-9= -2х+7
2х=7+9
2х=16
х=8 у= -9 при х=8
3) проходит ли график функции через точку А(-4;15).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
15= -2*(-4)+7
15=15, проходит.
2. Постройте график функции y = 3x – 2.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -5 -2 1
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 2;
Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=2
у=3*2-2=4 у=4 при х=2
Согласно графика, также при х=2 у=4
2)значение аргумента, при котором значение функции равно -5.
Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
y = 3x – 2
у= -5
-5=3х-2
-3х= -2+5
-3х=3
х= -1 у= -5 при х== -1
Согласно графика, у= -5 при х= -1.
3. Не выполняя построения, найдите координаты точек пересечения графика функции у = 0,5х - 3 с осями координат.
а)график пересекает ось Ох при у=0:
у=0
0=0,5х-3
-0,5х= -3
х= -3/-0,5
х=6
Координаты точки пересечения графиком оси Ох (6: 0)
б)график пересекает ось Оу при х=0:
х=0
у=0-3
у= -3
Координаты точки пересечения графиком оси Оу (0; -3)
4. При каком значении к график функции у = kx- 6 проходит через точку А (-2; 20)?
х= -2
у=20
20=k*(-2)-6
20= -2k-6
2k= -6-20
2k=-26
k= -13
Уравнение: у= -13х-6
5. Постройте график функции:
y (-2х, если х 2, -4, если х > 2.
Неясное задание.