Пусть на расстояни х км от пункта А состоялась встреча - это так же расстояние которое проехал мотоциклист за 1 ч 20 мин = 80 мин, поэтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
Объяснение:
1) x^2-5x-12=6;
x^2-5x-18=0;
a=1; b=-5; c=-18;
D=b^2-4ac=(-5)^2-4*1*(-18)=25+72=97>0 - 2 корня
x1,2 = (-b±√D)/2a=((-(-5)±√97)/2*1=(5±√97)2;
x1=(5+√97)2≈7.42;
x2=(5-√97)2≈-2.42.
2) -x^2+3x-12=-4x;
-x^2+7x-12=0; [*(-1)]
x^2-7x+12=0;
a=1; b=-7; c=12;
D=b^2-4ac=(-7)^2-4*1*12=49-48=1>0 - 2 корня.
x1,2=(-b±√D)/2a=(-(-7)±√1)/2a=(7±1)/2;
x1=(7+1)/2=8/2=4;
x2=(7-1)/2=6/2=3.
3) 9x-x^2=6+2x;
-x^2+7x-6=0; [*(-1)]
x^2-7x+6=0;
a=1; b=-7; c=6;
D=b^2-4ac = (-7)^2-4*1*6=49-24=25>0 - 2 корня.
x1,2=(-b±√D)/2a=(-(-7)±√25)/2*1=(7±5)/2;
x1=(7+5)/2=12/2=6;
x2=(7-5)/2=2/2=1.