1. находим критические точки. приравнивая производную к нулю.
2. устанавливаем знак производной. т.е. решаем неравенство f'>0( или f'<0)
3 промежутки в которых производная больше нуля - промежутки строго возрастания функции.
а) у'>0
10x-3>0⇒x>0.3, т.к функция непрерывна во всей своей обл. определения. то в промежутки возрастания и убывания можно включить и концы промежутка.
при х∈[0.3;+∞) функция возрастает, при х∈(-∞;0.3] убывает.
2. у'=2/х² эта производная при х∈(-∞;0) и (0;+∞) положительна. значит, функция возрастает при х∈(-∞;0) и (0;+∞)
3. у'=-6/х3, при х∈(0;+∞) функция убывает. при х∈(-∞;0) возрастает.
4. у'=(2х²-х²-1)/х²=(х²-1)х²=(х-1)(х+1)/х²
___-101
+ - - +
убывает функция на промежутках [-1;0) и (0;1] и возрастает (-∞;-1] и [1;+∞)
ответ: y = -6x - 11
Объяснение:
Касательная параллельна прямой y = -6x + 7. Коэффициент наклона этой прямой равен -6.
Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -6.
То есть мы знаем коэффициент наклона касательной, а, тем самым, значение производной в точке касания.
Итак, у нас дана функция y = x² - 4x - 10 и значение производной в точке касания.
а) Найдем точку, в которой производная функции y = x² - 4x - 10 равна -6.
Сначала найдем уравнение производной.
y' = (x² - 4x - 10)' = 2x - 4
Приравняем производную к числу -6.
2x - 4 = -6
2x = -2
x = -1
б) Найдем уравнение касательной к графику функции y = x² - 4x - 10 в точке x₀ = -1.
Найдем значение функции в точке x₀ = -1.
y(-1) = (-1)² - 4·(-1) - 10 = 1 + 4 - 10 = -5
Подставим эти значения в уравнение касательной:
y - y(x₀) = y'(x₀)(x - x₀)
y - (-5) = -6(x - (-1))
y + 5 = -6(x + 1)
y = -6x - 6 - 5
y = -6x - 11
х= -0,8
x = 4/3
х=1/64
Объяснение:
1) 1,2х+1,44-х²-1,2х+1,8х+х²=0
1,44+1,8х=0
1,8х=-1,44
х= -0,8
2) 0,49х²-3х-(0,7х+2)(0,7х-2)=0
-3x +4 = 0
-3x = -4
x = 4/3
3) (1,6х+1)(1-1,6х)-64х(1-0,04х)=0
1,6х-2,56х²+1-1,6х-64х+2,56х²=0
1-64х=0
-64х=-1
х=1/64